Files
nuvia/nuvia.ino
2025-07-18 16:04:50 +00:00

160 lines
3.5 KiB
C++

#include <MovingAverage.h>
#include <Wire.h>
#include <VL53L0X.h>
#include <AccelStepper.h>
#include <MultiStepper.h>
// 20 teeth to 125 = 6.25 at 1/8 steps = 10000 steps per revolution = 251mm at 80mm diameter = ca. 36000 steps for 900mm
#define LIMITUP 2700
#define LIMITDOWN 2100
#define STEP 6
#define DIR 7
#define ENABLE 1
#define LEDWW 14
#define LEDCW 10
#define REFERENCE 18
VL53L0X sensor;
AccelStepper stepper = AccelStepper(AccelStepper::DRIVER, 6, 7);
MovingAverage filter(10);
volatile bool referenced = false;
int maxSteps = floor((LIMITUP - LIMITDOWN) * (10000/251));
volatile int position = 0;
volatile int newPosition = 0;
volatile int newSpeed = 1000;
volatile int speed = 1000;
volatile int distance = 10000;
volatile bool setup_finished = false;
volatile bool triggered = false;
volatile bool cooldown = false;
float phase = 0;
void setup() {
// put your setup code here, to run once:
Serial.begin(9600);
delay(1000);
pinMode(REFERENCE, INPUT_PULLUP);
Wire.setSDA(16);
Wire.setSCL(17);
Wire.begin();
// for(int i = 0; i < 10000; i++){ // 10000 steps = 1 revolution
// step(true);
// }
sensor.setTimeout(500);
if (!sensor.init())
{
while (1) {
Serial.println("Failed to detect and initialize sensor!");
delay(100);
}
}
sensor.setSignalRateLimit(0.1);
sensor.setVcselPulsePeriod(VL53L0X::VcselPeriodPreRange, 18);
sensor.setVcselPulsePeriod(VL53L0X::VcselPeriodFinalRange, 14);
//analogWrite(LEDCW, 25);
//analogWrite(LEDWW, 25);
delay(1000);
digitalWrite(ENABLE, LOW);
setup_finished = true;
}
void setup1(){
pinMode(ENABLE, OUTPUT);
stepper.setEnablePin(1);
stepper.setPinsInverted(true, false, true);
stepper.setMaxSpeed(200);
stepper.setAcceleration(50);
}
int counter = 0;
void loop() {
distance = 10000; //filter.addSample(sensor.readRangeSingleMillimeters());
if(referenced && distance < 2000 && !triggered && !cooldown) {
triggered = true;
counter = 0;
}
if(referenced) {
analogWrite(LEDWW, sinf(phase) * 75 + 85);
phase += 0.01;
} else {
analogWrite(LEDWW, sinf(phase) * 10 + 10);
phase += 0.25;
}
Serial.print(distance);
Serial.print("\t");
Serial.println(stepper.currentPosition());
delay(5);
}
uint32_t distance_to_go = 0;
void loop1(){
if(setup_finished){
if(!referenced){
if(digitalRead(REFERENCE) == HIGH) {
stepper.enableOutputs();
stepper.move(-100000);
} else {
referenced = true;
stepper.stop();
stepper.setCurrentPosition(0);
newPosition = random(0, maxSteps);
stepper.moveTo(newPosition);
}
} else {
if(triggered && !cooldown){
stepper.setMaxSpeed(6000);
stepper.setAcceleration(5000);
stepper.moveTo(100);
distance_to_go = stepper.distanceToGo();
cooldown = true;
Serial.println("TRIGGERED");
}
if(abs(stepper.distanceToGo()) < 2){
Serial.println("DISTANCE < 2");
if(!triggered){
Serial.println("NEW POS");
newPosition = random(0, maxSteps);
stepper.setMaxSpeed((rand() % 750) + 200);
stepper.setAcceleration((rand() % 500) + 100);
stepper.moveTo(newPosition);
}
if(triggered) {
Serial.println("RESET COOLDOWN");
cooldown = false;
triggered = false;
}
}
}
if(triggered) {
analogWrite(LEDCW, map(stepper.distanceToGo(), distance_to_go, 0, 150, 0));
}
stepper.run();
}
}