refactoring and better mapping concept
This commit is contained in:
94
sketch.js
94
sketch.js
@ -1,10 +1,11 @@
|
||||
let img;
|
||||
|
||||
let morphs = [];
|
||||
const orderedMorphs = [5,6,0,4,1,2,3];
|
||||
let count = 7;
|
||||
let size = 10;
|
||||
let countH = 400;
|
||||
let countV = 260;
|
||||
let countH = 800;
|
||||
let countV = 520;
|
||||
|
||||
// Load the image
|
||||
function preload() {
|
||||
@ -14,14 +15,6 @@ function preload() {
|
||||
}
|
||||
|
||||
function setup() {
|
||||
/*
|
||||
createCanvas(26*size, 40*size);
|
||||
imageMode(CORNER);
|
||||
for (let i = 0; i < 26; i++) {
|
||||
for (let j = 0; j < 40; j++) {
|
||||
image(morphs[1], i*size, j*size, size, size);
|
||||
}
|
||||
}*/
|
||||
|
||||
pixelDensity(1);
|
||||
|
||||
@ -29,80 +22,87 @@ function setup() {
|
||||
img.resize(0, countH);
|
||||
img.filter(GRAY);
|
||||
createCanvas(countV, countH);
|
||||
//createCanvas(countV*size, countH*size);
|
||||
image(img, 0, 0);
|
||||
|
||||
// load the pixels of the canvas
|
||||
// this is a 1-dimensional integer array with the rgba values of
|
||||
// the pixels
|
||||
loadPixels();
|
||||
let pixels2d = new Array(countH);
|
||||
for(let i = 0; i < countH; i++){
|
||||
pixels2d[i] = new Array(countV);
|
||||
}
|
||||
// create an array containing only the grayscale of every pixel
|
||||
// sins the picture is gray, the first 3 values (rgb) for every picture are similar
|
||||
// we need the value at indexes 0,4,7,...
|
||||
let i = 0;
|
||||
let j = 0;
|
||||
let str1 = "";
|
||||
let pixels1d = [];
|
||||
for (let i = 0; i < pixels.length; i += 4)
|
||||
pixels1d[i/4] = pixels[i];
|
||||
/*
|
||||
let averages = [];
|
||||
let sum = 0;
|
||||
for (let i = 0; i < pixels1d.length; i++) {
|
||||
sum += pixels1d[i];
|
||||
if (i%10 == 0) {
|
||||
averages[i/10] = sum/10;
|
||||
sum = 0;
|
||||
}
|
||||
}
|
||||
*/
|
||||
pixels1d.push(pixels[i]);
|
||||
|
||||
// combine every 10 values into one by calculating their average
|
||||
// put the result in a 2d array, the rows are the pixelrows of the image
|
||||
// the columns are greyscale averages of every 10 pixelcolumns of the picture
|
||||
let averages = new Array(countH);
|
||||
for (let i = 0; i < averages.length; i++)
|
||||
averages[i] = new Array(countV/10);
|
||||
|
||||
let sum = 0;
|
||||
let sum2 = [];
|
||||
for(let k = 0; k < pixels1d.length; k++) {
|
||||
//str1 += str(pixels1d[k]%count);
|
||||
sum += pixels1d[k];
|
||||
if (j%10 == 0) {
|
||||
averages[i][j/10] = sum/10;
|
||||
averages[i][Math.floor(j/10)] = sum/10;
|
||||
sum = 0;
|
||||
}
|
||||
pixels2d[i][j] = pixels1d[k]%count;
|
||||
j++;
|
||||
if (k%countV == 0 && k>0) {
|
||||
//str1 += '\n';
|
||||
i++;
|
||||
j = 0;
|
||||
}
|
||||
}
|
||||
let sums = []
|
||||
// combine every 10 rows into one row by calculating the average of the values of every column
|
||||
// put the result into a new array 'average2'
|
||||
let sums = new Array(countV/10).fill(0);
|
||||
let averages2 = new Array(countH/10);
|
||||
for (let i = 0; i < averages2.length; i++)
|
||||
averages2[i] = new Array(countV/10);
|
||||
|
||||
for (let i = 0; i < averages.length; i++) {
|
||||
for (let j = 0; j < averages[0].length; j++) {
|
||||
for (let j = 0; j < averages2[0].length; j++) {
|
||||
sums[j] += averages[i][j];
|
||||
if (i%10 == 0) {
|
||||
averages2[i/10][j] = Math.round(sums[j]/10);
|
||||
if (!averages2[i/10][j]) averages2[i/10][j] = 0;
|
||||
averages2[i/10][j] %= 7;
|
||||
// let maxVal = 255; // Da Graustufen 0-255 sind
|
||||
// averages2[i/10][j] = Math.floor((averages2[i/10][j] / maxVal) * 6);
|
||||
sums[j] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
console.log(averages2);
|
||||
console.log(pixels1d);
|
||||
console.log(pixels2d);
|
||||
// 1. Finde Min- und Max-Wert
|
||||
let minGray = Infinity;
|
||||
let maxGray = -Infinity;
|
||||
|
||||
//saveStrings(str1.split('\n'), 'data.txt');
|
||||
//resizeCanvas(countV*10, countH*10)
|
||||
fill(255);
|
||||
//rect(0,0,countV,countH);
|
||||
for (let i = 0; i < averages2.length; i++) {
|
||||
for (let j = 0; j < averages2[i].length; j++) {
|
||||
let val = averages2[i][j];
|
||||
if (val < minGray) minGray = val;
|
||||
if (val > maxGray) maxGray = val;
|
||||
}
|
||||
}
|
||||
|
||||
// 2. Skaliere die Werte basierend auf minGray und maxGray
|
||||
for (let i = 0; i < averages2.length; i++) {
|
||||
for (let j = 0; j < averages2[i].length; j++) {
|
||||
let normalized = (averages2[i][j] - minGray) / (maxGray - minGray); // auf 0–1 skalieren
|
||||
averages2[i][j] = Math.round(normalized * 6)%7; // auf 0–6 mappen
|
||||
}
|
||||
}
|
||||
console.log(averages2);
|
||||
|
||||
resizeCanvas(countV*2, countH);
|
||||
image(img, 0, 0);
|
||||
|
||||
imageMode(CORNER);
|
||||
for (let i = 0; i < countV/10; i++) {
|
||||
for (let j = 0; j < countH/10; j++) {
|
||||
image(morphs[averages2[j][i]], i*size, j*size, size, size);
|
||||
for (let i = 0; i < countH/10; i++) {
|
||||
for (let j = 0; j < countV/10; j++) {
|
||||
image(morphs[orderedMorphs[averages2[i][j]]], j*size+countV+size, i*size, size, size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user