142 lines
4.8 KiB
C
142 lines
4.8 KiB
C
|
|
/**
|
||
|
|
* Copyright (c) 2014-2018 Enzien Audio Ltd.
|
||
|
|
*
|
||
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
||
|
|
* purpose with or without fee is hereby granted, provided that the above
|
||
|
|
* copyright notice and this permission notice appear in all copies.
|
||
|
|
*
|
||
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
|
||
|
|
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
|
||
|
|
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
|
||
|
|
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
|
||
|
|
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
|
||
|
|
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
|
||
|
|
* PERFORMANCE OF THIS SOFTWARE.
|
||
|
|
*/
|
||
|
|
|
||
|
|
#include "HvSignalPhasor.h"
|
||
|
|
|
||
|
|
#define HV_PHASOR_2_32 4294967296.0
|
||
|
|
|
||
|
|
#if HV_SIMD_AVX
|
||
|
|
static void sPhasor_updatePhase(SignalPhasor *o, float p) {
|
||
|
|
o->phase = _mm256_set1_ps(p+1.0f); // o->phase is in range [1,2]
|
||
|
|
#elif HV_SIMD_SSE
|
||
|
|
static void sPhasor_updatePhase(SignalPhasor *o, hv_uint32_t p) {
|
||
|
|
o->phase = _mm_set1_epi32(p);
|
||
|
|
#elif HV_SIMD_NEON
|
||
|
|
static void sPhasor_updatePhase(SignalPhasor *o, hv_uint32_t p) {
|
||
|
|
o->phase = vdupq_n_u32(p);
|
||
|
|
#else // HV_SIMD_NONE
|
||
|
|
static void sPhasor_updatePhase(SignalPhasor *o, hv_uint32_t p) {
|
||
|
|
o->phase = p;
|
||
|
|
#endif
|
||
|
|
}
|
||
|
|
|
||
|
|
// input phase is in the range of [0,1]. It is independent of o->phase.
|
||
|
|
#if HV_SIMD_AVX
|
||
|
|
static void sPhasor_k_updatePhase(SignalPhasor *o, float p) {
|
||
|
|
o->phase = _mm256_set_ps(
|
||
|
|
p+1.0f+7.0f*o->step.f2sc, p+1.0f+6.0f*o->step.f2sc,
|
||
|
|
p+1.0f+5.0f*o->step.f2sc, p+1.0f+4.0f*o->step.f2sc,
|
||
|
|
p+1.0f+3.0f*o->step.f2sc, p+1.0f+2.0f*o->step.f2sc,
|
||
|
|
p+1.0f+o->step.f2sc, p+1.0f);
|
||
|
|
|
||
|
|
// ensure that o->phase is still in range [1,2]
|
||
|
|
o->phase = _mm256_or_ps(_mm256_andnot_ps(
|
||
|
|
_mm256_set1_ps(-INFINITY), o->phase), _mm256_set1_ps(1.0f));
|
||
|
|
#elif HV_SIMD_SSE
|
||
|
|
static void sPhasor_k_updatePhase(SignalPhasor *o, hv_uint32_t p) {
|
||
|
|
o->phase = _mm_set_epi32(3*o->step.s+p, 2*o->step.s+p, o->step.s+p, p);
|
||
|
|
#elif HV_SIMD_NEON
|
||
|
|
static void sPhasor_k_updatePhase(SignalPhasor *o, hv_uint32_t p) {
|
||
|
|
o->phase = (uint32x4_t) {p, o->step.s+p, 2*o->step.s+p, 3*o->step.s+p};
|
||
|
|
#else // HV_SIMD_NONE
|
||
|
|
static void sPhasor_k_updatePhase(SignalPhasor *o, hv_uint32_t p) {
|
||
|
|
o->phase = p;
|
||
|
|
#endif
|
||
|
|
}
|
||
|
|
|
||
|
|
static void sPhasor_k_updateFrequency(SignalPhasor *o, float f, double r) {
|
||
|
|
#if HV_SIMD_AVX
|
||
|
|
o->step.f2sc = (float) (f/r);
|
||
|
|
o->inc = _mm256_set1_ps((float) (8.0f*f/r));
|
||
|
|
sPhasor_k_updatePhase(o, o->phase[0]);
|
||
|
|
#elif HV_SIMD_SSE
|
||
|
|
o->step.s = (hv_int32_t) (f*(HV_PHASOR_2_32/r));
|
||
|
|
o->inc = _mm_set1_epi32(4*o->step.s);
|
||
|
|
const hv_uint32_t *const p = (hv_uint32_t *) &o->phase;
|
||
|
|
sPhasor_k_updatePhase(o, p[0]);
|
||
|
|
#elif HV_SIMD_NEON
|
||
|
|
o->step.s = (hv_int32_t) (f*(HV_PHASOR_2_32/r));
|
||
|
|
o->inc = vdupq_n_s32(4*o->step.s);
|
||
|
|
sPhasor_k_updatePhase(o, vgetq_lane_u32(o->phase, 0));
|
||
|
|
#else // HV_SIMD_NONE
|
||
|
|
o->step.s = (hv_int32_t) (f*(HV_PHASOR_2_32/r));
|
||
|
|
o->inc = o->step.s;
|
||
|
|
// no need to update phase
|
||
|
|
#endif
|
||
|
|
}
|
||
|
|
|
||
|
|
hv_size_t sPhasor_init(SignalPhasor *o, double samplerate) {
|
||
|
|
#if HV_SIMD_AVX
|
||
|
|
o->phase = _mm256_set1_ps(1.0f);
|
||
|
|
o->inc = _mm256_setzero_ps();
|
||
|
|
o->step.f2sc = (float) (1.0/samplerate);
|
||
|
|
#elif HV_SIMD_SSE
|
||
|
|
o->phase = _mm_setzero_si128();
|
||
|
|
o->inc = _mm_setzero_si128();
|
||
|
|
o->step.f2sc = (float) (HV_PHASOR_2_32/samplerate);
|
||
|
|
#elif HV_SIMD_NEON
|
||
|
|
o->phase = vdupq_n_u32(0);
|
||
|
|
o->inc = vdupq_n_s32(0);
|
||
|
|
o->step.f2sc = (float) (HV_PHASOR_2_32/samplerate);
|
||
|
|
#else // HV_SIMD_NONE
|
||
|
|
o->phase = 0;
|
||
|
|
o->inc = 0;
|
||
|
|
o->step.f2sc = (float) (HV_PHASOR_2_32/samplerate);
|
||
|
|
#endif
|
||
|
|
return 0;
|
||
|
|
}
|
||
|
|
|
||
|
|
void sPhasor_onMessage(HeavyContextInterface *_c, SignalPhasor *o, int letIn, const HvMessage *m) {
|
||
|
|
if (letIn == 1) {
|
||
|
|
if (msg_isFloat(m,0)) {
|
||
|
|
float p = msg_getFloat(m,0);
|
||
|
|
while (p < 0.0f) p += 1.0f; // wrap phase to [0,1]
|
||
|
|
while (p > 1.0f) p -= 1.0f;
|
||
|
|
#if HV_SIMD_AVX
|
||
|
|
sPhasor_updatePhase(o, p);
|
||
|
|
#else // HV_SIMD_SSE || HV_SIMD_NEON || HV_SIMD_NONE
|
||
|
|
sPhasor_updatePhase(o, (hv_uint32_t) (p * HV_PHASOR_2_32));
|
||
|
|
#endif
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
hv_size_t sPhasor_k_init(SignalPhasor *o, float frequency, double samplerate) {
|
||
|
|
__hv_zero_i((hv_bOuti_t) &o->phase);
|
||
|
|
sPhasor_k_updateFrequency(o, frequency, samplerate);
|
||
|
|
return 0;
|
||
|
|
}
|
||
|
|
|
||
|
|
void sPhasor_k_onMessage(HeavyContextInterface *_c, SignalPhasor *o, int letIn, const HvMessage *m) {
|
||
|
|
if (msg_isFloat(m,0)) {
|
||
|
|
switch (letIn) {
|
||
|
|
case 0: sPhasor_k_updateFrequency(o, msg_getFloat(m,0), hv_getSampleRate(_c)); break;
|
||
|
|
case 1: {
|
||
|
|
float p = msg_getFloat(m,0);
|
||
|
|
while (p < 0.0f) p += 1.0f; // wrap phase to [0,1]
|
||
|
|
while (p > 1.0f) p -= 1.0f;
|
||
|
|
#if HV_SIMD_AVX
|
||
|
|
sPhasor_k_updatePhase(o, p);
|
||
|
|
#else // HV_SIMD_SSE || HV_SIMD_NEON || HV_SIMD_NONE
|
||
|
|
sPhasor_k_updatePhase(o, (hv_uint32_t) (p * HV_PHASOR_2_32));
|
||
|
|
#endif
|
||
|
|
break;
|
||
|
|
}
|
||
|
|
default: break;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|