11 Commits

4 changed files with 437 additions and 310 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
build

45
README.md Normal file
View File

@ -0,0 +1,45 @@
# Soundcube Firmware
## Install new firmware
1. Go to [Releases](https://code.w4d.dev/W4D/soundcube-firmware/releases)
2. Download latest `soundcube-firmware.ino.uf2` file
3. On your Soundcube Board: Press and hold the outer most white button as seen from the USB-C socket
4. While holding the button press the inner most white button once
- the board will go into bootloader mode and appear as USB thumb drive
6. Copy the `soundcube-firmware.ino.uf2` file to the thumb drive and wait for the board to restart
## config.txt
Json formatted config file. For now only edge led color working.
```
{
"edge": {
"color":{
"r":50,
"g":0,
"b":0
}
}
}
```
## click.wav (not played correctly)
Put a file called `click.wav` (not longer than a few seconds) in the root of the SD card and it will play when you press a button.
## Code something yourself
1. Download [Arduino IDE](https://www.arduino.cc/en/software/)
2. Install and open "Preferences"
3. Follow these [instructions](https://github.com/earlephilhower/arduino-pico?tab=readme-ov-file#installation)
- No need to change checkboxes, only paste the URL and hit OK.
4. Install **Raspberry Pi Pico** boards ([HowTo install boards](https://support.arduino.cc/hc/en-us/articles/360016119519-Add-boards-to-Arduino-IDE))
5. Install libraries ([HowTo install libraries](https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-installing-a-library/)): Adafruit Neopixel, AS5600 (Rob Tillaart), TCA9555 (Rob Tillaart)
6. Choose **Generic RP2350** as board and the correct port (Mac: /dev/cu.usbmodemXXXX, PC: COMXX Serial Port)
7. Go to **Tools -> Flash Size** and choose **16MB (no FS)**
8. Make your changes in the code
9. Hit Upload Button (Arduino IDE compiles and uploads it automatically)

View File

@ -1,186 +1,267 @@
#include <TCA9555.h> #include <ArduinoJson.h>
#include <AS5600.h> #include <ArduinoJson.hpp>
#include <Adafruit_NeoPixel.h>
#include <PWMAudio.h> #include <TCA9555.h>
#include <I2S.h> #include <AS5600.h>
//#include <Adafruit_NeoPixel.h>
#define HAPTIC 0 #include <FastLED.h>
#define AURAL 0 #include <PWMAudio.h>
#define UI_SAMPLERATE 22050 #include <I2S.h>
#include <SPI.h>
I2S i2s(INPUT_PULLUP); #include <SD.h>
TCA9555 TCA(0x20, &Wire1); #define HAPTIC 1
AS5600 ENC(&Wire1); #define AURAL 1
#define UI_SAMPLERATE 22050
PWMAudio ui_snd(8);
I2S i2s(INPUT_PULLUP);
enum BUTTON {CVINL, CVINR, INL, INR, OUTR, OUTL, CVOUTR, CVOUTL, RIGHT, LEFT, SELECT, DEBUG1, DEBUG2, DEBUG3};
TCA9555 TCA(0x20, &Wire1);
Adafruit_NeoPixel edge_pixels(8, 4, NEO_GRB + NEO_KHZ800); AS5600 ENC(&Wire1);
Adafruit_NeoPixel ui_pixels(72, 5, NEO_GRB + NEO_KHZ800);
PWMAudio ui_snd(8);
volatile bool flag = false;
volatile bool click = false; enum BUTTON {CVINL, CVINR, INL, INR, OUTR, OUTL, CVOUTR, CVOUTL, RIGHT, LEFT, SELECT, DEBUG1, DEBUG2, DEBUG3};
volatile bool amp = false;
CRGB ui_leds[74];
int counter = 0; CRGB edge_leds[11];
bool buttons[16] = {false}; //Adafruit_NeoPixel ui_pixels(74, 5, NEO_GRB + NEO_KHZ800);
//Adafruit_NeoPixel edge_pixels(11, 4, NEO_GRB + NEO_KHZ800);
int16_t beep[UI_SAMPLERATE];
void pwm_audio_callback() { volatile bool flag = false;
while (ui_snd.availableForWrite()) { volatile bool click = false;
if(click) { volatile bool amp = false;
ui_snd.write(beep[counter]);
} else { int counter = 0;
ui_snd.write(0);
} bool buttons[16] = {false};
counter++;
if(counter == UI_SAMPLERATE) counter = 0; int16_t beep[UI_SAMPLERATE];
} uint16_t beep_length = 0;
}
bool sd_card_detected = false;
void tca_irq() {
flag = true; struct Config {
} int edge_color_r = 0;
int edge_color_g = 0;
void setup() { int edge_color_b = 50;
};
for(int i = 0; i < UI_SAMPLERATE; i++){
float sine_pos = (2.0f * M_PI * 8000.0f * (float)i) / (float)UI_SAMPLERATE; Config config;
beep[i] = (int16_t)(sin(sine_pos) * 8000.0f);
} void loadConfiguration(Config& config) {
File file = SD.open("/config.txt");
Serial.begin(); JsonDocument doc;
delay(2000);
DeserializationError error = deserializeJson(doc, file);
Serial.println("INIT WIRE"); if(error) Serial.println(F("Failed to read file, using default configuration"));
Wire1.setSDA(2);
Wire1.setSCL(3); config.edge_color_r = doc["edge"]["color"]["r"] | 0;
Wire1.begin(); config.edge_color_g = doc["edge"]["color"]["g"] | 0;
Serial.println("SUCCESS"); config.edge_color_b = doc["edge"]["color"]["b"] | 50;
Serial.println("INIT TCA"); //strlcpy(config.hostname, doc["hostname"] | "example.com", sizeof(config.hostname));
TCA.begin();
TCA.pinMode16(0xFFFF); file.close();
TCA.setPolarity16(0x0000); }
Serial.println("SUCCESS");
void pwm_audio_callback() {
Serial.println("INIT INTERRUPT"); while (ui_snd.availableForWrite()) {
pinMode(1, INPUT_PULLUP); if(click) {
attachInterrupt(digitalPinToInterrupt(1), tca_irq, FALLING); ui_snd.write(beep[counter]);
Serial.println("SUCCESS"); counter++;
if(counter == beep_length) {
// Rotary Encoder counter = 0;
ENC.begin(4); // set direction pin. click = false;
}
pinMode(6, OUTPUT); // Vibration Motor } else {
pinMode(7, OUTPUT); // UI Amp Enable digitalWrite(7, LOW);
ui_snd.write(0);
ui_snd.onTransmit(pwm_audio_callback); counter = 0;
ui_snd.begin(UI_SAMPLERATE); }
}
digitalWrite(7, LOW); }
edge_pixels.begin(); // INITIALIZE NeoPixel strip object (REQUIRED) void tca_irq() {
ui_pixels.begin(); // INITIALIZE NeoPixel strip object (REQUIRED) flag = true;
}
// i2s.setDOUT(14);
// i2s.setDIN(15); void setup() {
// i2s.setBCLK(16); // Serial.begin();
// i2s.swapClocks(); delay(2000);
// i2s.setMCLK(18);
// i2s.setBitsPerSample(16); FastLED.addLeds<NEOPIXEL, 4>(edge_leds, 11);
// i2s.setFrequency(48000); FastLED.addLeds<NEOPIXEL, 5>(ui_leds, 74);
// i2s.setSysClk(48000);
// i2s.begin(); pinMode(21, INPUT_PULLUP);
sd_card_detected = !digitalRead(21);
// while (1) { delay(500);
// int16_t l, r;
// i2s.read16(&l, &r); bool sdInitialized = SD.begin(22, 23, 24);
// i2s.write16(l, r); delay(100);
// } if(!sdInitialized) sdInitialized = SD.begin(22, 23, 24); // hack to prevent SD card from not initializing after soft reset
}
int active = 0; if(sdInitialized) loadConfiguration(config);
uint32_t lastTime = 0;
int32_t position = 0; if(sdInitialized && SD.exists("/click.wav")) {
File click = SD.open("/click.wav");
void loop() { int click_bytes = 0;
edge_pixels.clear(); // Set all pixel colors to 'off' int16_t maxv = 0;
ui_pixels.clear(); // Set all pixel colors to 'off' while (click.available() || click_bytes == UI_SAMPLERATE-1) {
int16_t sample = click.read() * 32;
position = ENC.getCumulativePosition(); if(abs(sample) > maxv) maxv = sample;
beep[click_bytes] = sample;
// if (millis() - lastTime >= 100) click_bytes++;
// { }
// lastTime = millis(); click.close();
// Serial.print(ENC.getCumulativePosition());
// Serial.print("\t"); beep_length = click_bytes;
// Serial.println(ENC.getRevolutions()); Serial.print("Read ");
// } Serial.print(beep_length);
Serial.print(" bytes from click.wav into beep array. maxV was ");
for (int i = 0; i < 48; i++) { Serial.println(maxv);
ui_pixels.setPixelColor(i + 3, edge_pixels.Color(0, 0, 0)); } else {
} for(int i = 0; i < UI_SAMPLERATE; i++){
float sine_pos = (2.0f * M_PI * 8000.0f * (float)i) / (float)UI_SAMPLERATE;
if (flag) { beep[i] = (int16_t)(sin(sine_pos) * 8000.0f);
int val = TCA.read16(); }
Serial.println(val, BIN); Serial.println("Synthesized 8kHz sine into beep array.");
beep_length = UI_SAMPLERATE;
for(int i = 0; i < 16; i++){ }
buttons[i] = ~(val >> i) & 0x01;
Serial.print(buttons[i]); Serial.println("INIT WIRE");
Serial.print(" "); Wire1.setSDA(2);
} Wire1.setSCL(3);
Serial.println(); Wire1.begin();
Serial.println("SUCCESS");
flag = false;
if (HAPTIC) { Serial.println("INIT TCA");
digitalWrite(6, HIGH); TCA.begin();
} TCA.pinMode16(0xFFFF);
if (AURAL) { TCA.setPolarity16(0x0000);
digitalWrite(7, HIGH); Serial.println("SUCCESS");
click = true;
delay(50); Serial.println("INIT INTERRUPT");
click = false; pinMode(1, INPUT_PULLUP);
digitalWrite(7, LOW); attachInterrupt(digitalPinToInterrupt(1), tca_irq, FALLING);
} Serial.println("SUCCESS");
if(HAPTIC){
if(!AURAL) delay(50); // Rotary Encoder
digitalWrite(6, LOW); ENC.begin(); // set direction pin.
} ENC.setDirection(AS5600_COUNTERCLOCK_WISE);
for (int i = 0; i < 48; i++) {
ui_pixels.setPixelColor(i + 3, edge_pixels.Color(0, 15, 0)); pinMode(6, OUTPUT); // Vibration Motor
} pinMode(7, OUTPUT); // UI Amp Enable
if(buttons[RIGHT]) active++;
if(buttons[LEFT]) active--; ui_snd.onTransmit(pwm_audio_callback);
if(active == 13) active = 0; ui_snd.begin(UI_SAMPLERATE);
if(active == -1) active = 12;
} digitalWrite(7, LOW);
// 11111110 11111111 button right
digitalWrite(6, HIGH);
// EDGE LEDs delay(50);
for (int i = 0; i < 8; i++) { digitalWrite(6, LOW);
edge_pixels.setPixelColor(i, edge_pixels.Color(15, 15, 15));
} // i2s.setDOUT(14);
// i2s.setDIN(15);
// Rotary button LEDs // i2s.setBCLK(16); //
ui_pixels.setPixelColor(0, edge_pixels.Color(0, 0, 15)); // i2s.swapClocks();
ui_pixels.setPixelColor(1, edge_pixels.Color(0, 0, 15)); // i2s.setMCLK(18);
ui_pixels.setPixelColor(2, edge_pixels.Color(0, 0, 15)); // i2s.setBitsPerSample(16);
// i2s.setFrequency(48000);
for (int i = 0; i < 13; i++) { // i2s.setSysClk(48000);
ui_pixels.setPixelColor(i + 3 + 48 + 4, edge_pixels.Color(0, 0, 0)); // i2s.begin();
}
// while (1) {
ui_pixels.setPixelColor(active + 3 + 48 + 4, edge_pixels.Color(255, 255, 255)); // int16_t l, r;
// i2s.read16(&l, &r);
// put your main code here, to run repeatedly: // i2s.write16(l, r);
// }
edge_pixels.show(); // Set all pixel colors to 'off' }
ui_pixels.show(); // Set all pixel colors to 'off'
int active = 0;
delay(1); int active_led_ring = 0;
uint32_t lastTime = 0;
int32_t position = 0;
void loop() {
//ui_pixels.clear(); // Set all pixel colors to 'off'
//edge_pixels.clear(); // Set all pixel colors to 'off'
position = ENC.getCumulativePosition();
sd_card_detected = !digitalRead(21);
if(sd_card_detected) edge_leds[8] = CRGB(0,25,0);
if(!sd_card_detected) edge_leds[8] = CRGB(25,0,0);
// EDGE LEDs
for (int i = 0; i < 8; i++) {
edge_leds[i] = CRGB(config.edge_color_r, config.edge_color_g, config.edge_color_b);
}
// LED Ring leeren
for (int i = 0; i < 48; i++) {
ui_leds[i + 3] = CRGB(0, 0, 0);
}
// flag = true when a button is pushed
if (flag) {
int val = TCA.read16();
for(int i = 0; i < 16; i++){
buttons[i] = ~(val >> i) & 0x01;
}
// Make vibration
if (HAPTIC) {
digitalWrite(6, HIGH);
delay(50);
digitalWrite(6, LOW);
}
// Make beep
if (AURAL) {
digitalWrite(7, HIGH);
click = true;
}
// Flash led ring
for (int i = 0; i < 48; i++) {
ui_leds[i + 3] = CRGB(0, 15, 0);
}
// Switch through LED matrix
if(buttons[RIGHT]) active++;
if(buttons[LEFT]) active--;
if(active == 13) active = 0;
if(active == -1) active = 12;
flag = false;
}
// Rotary button LEDs
ui_leds[0] = CRGB(0, 0, 15);
ui_leds[1] = CRGB(0, 0, 15);
ui_leds[2] = CRGB(0, 0, 15);
// empty LED matrix
for (int i = 0; i < 13; i++) {
ui_leds[i + 3 + 48 + 4] = CRGB(0, 0, 0);
}
// set active LED matrix LED
ui_leds[active + 3 + 48 + 4] = CRGB(255, 255, 255);
if(position < 0) position += 4096;
active_led_ring = (position / 32) % 48;
// set active LED ring LED
ui_leds[active_led_ring + 3] = CRGB(255, 255, 255);
FastLED.show();
delay(1); // wait 1ms
} }

View File

@ -1,125 +1,125 @@
/* /*
I2S bi-directional input and output buffered loopback example I2S bi-directional input and output buffered loopback example
Released to the Public Domain by Cooper Dalrymple Released to the Public Domain by Cooper Dalrymple
*/ */
#include <Wire.h> #include <Wire.h>
#include <I2S.h> #include <I2S.h>
I2S i2s(INPUT_PULLUP); I2S i2s(INPUT_PULLUP);
#define SIZE 256 #define SIZE 256
int16_t buffer[SIZE]; int16_t buffer[SIZE];
void cw(char first, char second){ void cw(char first, char second){
Wire1.beginTransmission(0x18); Wire1.beginTransmission(0x18);
Wire1.write(first); Wire1.write(first);
Wire1.write(second); Wire1.write(second);
Wire1.endTransmission(); Wire1.endTransmission();
delay(5); delay(5);
} }
void setup() { void setup() {
Serial.begin(115200); Serial.begin(115200);
delay(1000); delay(1000);
Wire1.setSDA(2); Wire1.setSDA(2);
Wire1.setSCL(3); Wire1.setSCL(3);
Wire1.begin(); Wire1.begin();
delay(1000); delay(1000);
// GENERAL // GENERAL
cw(0x00, 0x00); cw(0x00, 0x00);
cw(0x01, 0x01); cw(0x01, 0x01);
cw(0x1b, 0x10); // select I2S cw(0x1b, 0x10); // select I2S
// ADC // ADC
cw(0x00, 0x00); // select page 0 cw(0x00, 0x00); // select page 0
//cw(0x01, 0x01); // soft reset //cw(0x01, 0x01); // soft reset
cw(0x12, 0x87); // NADC 7 cw(0x12, 0x87); // NADC 7
cw(0x13, 0x82); // MADC 2 cw(0x13, 0x82); // MADC 2
cw(0x14, 0x80); // OSR ADC 128 cw(0x14, 0x80); // OSR ADC 128
cw(0x3d, 0x01); // ADC PRB_R1 cw(0x3d, 0x01); // ADC PRB_R1
cw(0x00, 0x01); // select page 1 cw(0x00, 0x01); // select page 1
cw(0x01, 0x08); // disable crude AVdd cw(0x01, 0x08); // disable crude AVdd
cw(0x02, 0x01); // enable internal AVdd LDO cw(0x02, 0x01); // enable internal AVdd LDO
cw(0x0a, 0x0B); // set input CM to 0.9V and LO to 1.65V cw(0x0a, 0x0B); // set input CM to 0.9V and LO to 1.65V
cw(0x3d, 0x00); // ADC PTM_R4 cw(0x3d, 0x00); // ADC PTM_R4
cw(0x34, 0x80); // route IN1L to LEFT_P with 20k input impedance cw(0x34, 0x80); // route IN1L to LEFT_P with 20k input impedance
cw(0x36, 0x80); // route CM to LEFT_M with 20k input impedance cw(0x36, 0x80); // route CM to LEFT_M with 20k input impedance
cw(0x37, 0x80); // route IN1R to RIGHT_P with 20k input impedance cw(0x37, 0x80); // route IN1R to RIGHT_P with 20k input impedance
cw(0x39, 0x80); // route CM to RIGHT_M with 20k input impedance cw(0x39, 0x80); // route CM to RIGHT_M with 20k input impedance
cw(0x3b, 0x0c); // unmute left MICPGA cw(0x3b, 0x0c); // unmute left MICPGA
cw(0x3c, 0x0c); // unmute right MICPGA cw(0x3c, 0x0c); // unmute right MICPGA
cw(0x00, 0x00); // select page 0 cw(0x00, 0x00); // select page 0
cw(0x51, 0xc0); // power up ADC cw(0x51, 0xc0); // power up ADC
cw(0x51, 0x00); // unmute ADC digital volume control cw(0x51, 0x00); // unmute ADC digital volume control
// DAC // DAC
cw(0x00, 0x00); // select page 0 cw(0x00, 0x00); // select page 0
//cw(0x01, 0x01); // software reset //cw(0x01, 0x01); // software reset
cw(0x0b, 0x82); // NDAC 2 cw(0x0b, 0x82); // NDAC 2
cw(0x0c, 0x87); // MDAC 7 cw(0x0c, 0x87); // MDAC 7
cw(0x0d, 0x00); // OSR DAC 128 cw(0x0d, 0x00); // OSR DAC 128
cw(0x0e, 0x80); // OSR DAC 128 cw(0x0e, 0x80); // OSR DAC 128
cw(0x1b, 0x10); // world length 20bits PTM_P4 (highest performance) cw(0x1b, 0x10); // world length 20bits PTM_P4 (highest performance)
cw(0x3c, 0x08); // PRB_P8 cw(0x3c, 0x08); // PRB_P8
cw(0x00, 0x01); // select page 1 cw(0x00, 0x01); // select page 1
//cw(0x01, 0x08); // disable internal crude avdd //cw(0x01, 0x08); // disable internal crude avdd
//cw(0x02, 0x01); // enable AVdd LDO //cw(0x02, 0x01); // enable AVdd LDO
cw(0x7b, 0x01); // set REF charging time to 40ms cw(0x7b, 0x01); // set REF charging time to 40ms
//cw(0x14, 0x25); // set HP soft stepping for anti pop //cw(0x14, 0x25); // set HP soft stepping for anti pop
//cw(0x0a, 0x0B); // set input CM to 0.9V and LO to 1.65V //cw(0x0a, 0x0B); // set input CM to 0.9V and LO to 1.65V
cw(0x0e, 0x08); // left DAC reconstruction filter routed to LOL cw(0x0e, 0x08); // left DAC reconstruction filter routed to LOL
cw(0x0f, 0x08); // right DAC reconstruction filter routed to LOR cw(0x0f, 0x08); // right DAC reconstruction filter routed to LOR
cw(0x03, 0x00); // DAC PTM_P3/4 cw(0x03, 0x00); // DAC PTM_P3/4
cw(0x04, 0x00); // DAC PTM_P3/4 cw(0x04, 0x00); // DAC PTM_P3/4
cw(0x12, 0x00); // LOL gain 0dB cw(0x12, 0x00); // LOL gain 0dB
cw(0x13, 0x00); // LOR gain 0dB cw(0x13, 0x00); // LOR gain 0dB
delay(1000); delay(1000);
cw(0x00, 0x00); // select page 0 cw(0x00, 0x00); // select page 0
cw(0x3f, 0xd6); // power up and route left digital audio to left dac channel and right to right cw(0x3f, 0xd6); // power up and route left digital audio to left dac channel and right to right
cw(0x40, 0x00); // unmute DAC digital volume cw(0x40, 0x00); // unmute DAC digital volume
pinMode(19, OUTPUT); // MCLK enable pinMode(19, OUTPUT); // MCLK enable
pinMode(20, OUTPUT); // CODEC reset pinMode(20, OUTPUT); // CODEC reset
i2s.setSysClk(48000); i2s.setSysClk(48000);
i2s.setDOUT(14); i2s.setDOUT(14);
i2s.setDIN(15); i2s.setDIN(15);
i2s.setBCLK(16); // Note: LRCLK = BCLK + 1 i2s.setBCLK(16); // Note: LRCLK = BCLK + 1
i2s.setMCLK(18); i2s.setMCLK(18);
i2s.swapClocks(); i2s.swapClocks();
i2s.setBitsPerSample(16); i2s.setBitsPerSample(16);
i2s.setFrequency(48000); i2s.setFrequency(48000);
i2s.setMCLKmult(128); // 6144000Hz 6.144MHz i2s.setMCLKmult(128); // 6144000Hz 6.144MHz
i2s.setBuffers(6, SIZE * sizeof(int16_t) / sizeof(uint32_t)); i2s.setBuffers(6, SIZE * sizeof(int16_t) / sizeof(uint32_t));
digitalWrite(19, HIGH); // enable MCLK digitalWrite(19, HIGH); // enable MCLK
digitalWrite(20, HIGH); digitalWrite(20, HIGH);
i2s.begin(); i2s.begin();
size_t count, index; size_t count, index;
while (1) { while (1) {
count = i2s.read((uint8_t *)&buffer, SIZE * sizeof(int16_t)) * sizeof(uint32_t) / sizeof(int16_t); count = i2s.read((uint8_t *)&buffer, SIZE * sizeof(int16_t)) * sizeof(uint32_t) / sizeof(int16_t);
index = 0; index = 0;
while (index < count) { while (index < count) {
// Reduce volume by half // Reduce volume by half
buffer[index++] >>= 1; // right buffer[index++] >>= 1; // right
buffer[index++] >>= 1; // left buffer[index++] >>= 1; // left
} }
i2s.write((const uint8_t *)&buffer, count * sizeof(int16_t)); i2s.write((const uint8_t *)&buffer, count * sizeof(int16_t));
} }
} }
void loop() { void loop() {
/* Nothing here */ /* Nothing here */
} }