/* I2S bi-directional input and output buffered loopback example Released to the Public Domain by Cooper Dalrymple */ #include #include I2S i2s(INPUT_PULLUP); #define SIZE 256 int16_t buffer[SIZE]; int16_t volume = 0; size_t count; void codec_transmit() { i2s.write((const uint8_t *)&buffer, count * sizeof(int16_t)); } void codec_receive(){ count = i2s.read((uint8_t *)&buffer, SIZE * sizeof(int16_t)) * sizeof(uint32_t) / sizeof(int16_t); size_t index = 0; volume = 0; while (index < count) { volume += buffer[index]; buffer[index] = 0; index++; } } void cw(unsigned char first, unsigned char second){ Wire1.beginTransmission(0x18); Wire1.write(first); Wire1.write(second); int result = Wire1.endTransmission(); Serial.print(0x18, HEX); Serial.print(" "); Serial.print(first, HEX); Serial.print(" "); Serial.print(second, HEX); Serial.print(" : "); if(result == 0) { Serial.println("OK"); } else { Serial.print("ERROR: "); Serial.println(result); } delay(5); } void cr(unsigned char first, size_t len){ Wire1.beginTransmission(0x18); Wire1.write(first); // set register for read Wire1.endTransmission(false); // false to not release the line Wire1.requestFrom(0x18, len, true); // request bytes from register XY Serial.print(first, HEX); Serial.print(" "); byte buff[len]; Wire1.readBytes(buff, len); for (int i = 0; i < len; i++) { Serial.print(buff[i], HEX); Serial.print(" "); Serial.println(buff[i], BIN); } } void setup() { i2s.setSysClk(48000); Serial.begin(115200); delay(2000); Wire1.setSDA(2); Wire1.setSCL(3); Wire1.begin(); delay(100); pinMode(19, OUTPUT); // MCLK enable digitalWrite(19, HIGH); // enable MCLK pinMode(20, OUTPUT); // CODEC reset digitalWrite(20, HIGH); // GENERAL cw(0x00, 0x00); // select page 0 cw(0x01, 0x01); // soft reset cw(0x1b, 0x30); // select I2S with 32 bit word length cw(0x1d, 0b00000000); // disable loopback // POWER and CM cw(0x00, 0x01); // select page 1 cw(0x01, 0x08); // disable weak (crude) AVdd connection to DVdd cw(0x02, 0x01); // enable internal AVdd LDO and enable analog blocks cw(0x09, 0b00001100); // power up LOL, LOR, power down MAL, MAR, HPL, HPR cw(0x0a, 0b00000000); // set full chip CM to 0.9V cw(0x47, 0b00110010); // analog input quick charge time 6.4ms // ROUTING cw(0x00, 0x01); // select page 1 cw(0x34, 0b11000000); // route IN1L to LEFT_P with 20k input impedance cw(0x36, 0b11000000); // route CM to LEFT_M with 20k input impedance cw(0x37, 0b11000000); // route IN1R to RIGHT_P with 20k input impedance cw(0x39, 0b11000000); // route CM to RIGHT_M with 20k input impedance cw(0x3a, 0b00111100); // connect IN2, IN3 weakly to CM // GAIN cw(0x00, 0x01); // select page 1 cw(0x3b, 0b00000000); // unmute left MICPGA, set gain to > 0db cw(0x3c, 0b00000000); // unmute right MICPGA, set gain to > 0db // VOLUME cw(0x00, 0x01); // select page 1 cw(0x16, 0b01110101); // MUTE IN1L to HPL cw(0x17, 0b01110101); // MUTE IN1R to HPR // ADC cw(0x00, 0x00); // select page 0 cw(0x12, 0x81); // NADC 1 cw(0x13, 0x82); // MADC 2 cw(0x14, 0x80); // OSR ADC 128 cw(0x3d, 0x01); // ADC PRB_R1 cw(0x00, 0x01); // select page 1 cw(0x3d, 0b01100100); // ADC PTM_R3 // DAC cw(0x00, 0x00); // select page 0 cw(0x0b, 0x81); // NDAC 1 cw(0x0c, 0x82); // MDAC 2 cw(0x0d, 0x00); // OSR DAC 128 cw(0x0e, 0x80); // OSR DAC 128 cw(0x1b, 0b00000000); // word length 16bits cw(0x3c, 0x08); // PRB_P8 cw(0x00, 0x01); // select page 1 cw(0x7b, 0x01); // set REF charging time to 40ms //cw(0x14, 0x25); // set HP soft stepping for anti pop //cw(0x0a, 0x0B); // set input CM to 0.9V and LO to 1.65V // ROUTING cw(0x00, 0x01); // select page 1 cw(0x0e, 0b00001000); // left DAC reconstruction filter routed to LOL cw(0x0f, 0b00001000); // right DAC reconstruction filter routed to LOR cw(0x03, 0b00000100); // DAC PTM_P3/4 cw(0x04, 0b00000100); // DAC PTM_P3/4 // LO GAIN cw(0x00, 0x01); cw(0x12, 0b00000010); // LOL gain 0dB cw(0x13, 0b00000010); // LOR gain 0dB // POWER UP // ADC cw(0x00, 0x00); // select page 0 cw(0x51, 0b11000000); // power up ADC cw(0x52, 0b00000000); // unmute ADC cw(0x3f, 0b11010100); // power up and route left digital audio to left dac channel and right to right cw(0x40, 0x00); // unmute DAC digital volume // DAC VOLUME 0b00000000 = 0dB, 10000001 = -63.5dB, 0b00110000 = +24dB cw(0x00, 0x00); // select page 0 cw(0x41, 0b00000000); // LEFT cw(0x42, 0b00000000); // RIGHT // ADC VOLUME 0b1101000 = -12dB, 0b00000000 = 0dB, 0b0101000 = +20dB cw(0x00, 0x00); // select page 0 cw(0x53, 0b00000000); // LEFT cw(0x54, 0b00000000); // RIGHT // STATUS FLAGS Serial.println("CODEC STATUS"); cw(0x00, 0x00); // select page 0 Serial.println("ADC Flags"); cr(0x24, 1); Serial.println("DAC Flags"); cr(0x25, 1); Serial.println("P0_42 - Sticky Flags"); cr(0x2A, 1); //i2s.onTransmit(codec_transmit); //i2s.onReceive(codec_receive); i2s.setDOUT(15); i2s.setDIN(14); i2s.setBCLK(16); // Note: LRCLK = BCLK + 1 i2s.setMCLK(18); i2s.setMCLKmult(256); // 12.288.000Hz i2s.swapClocks(); i2s.setBitsPerSample(16); //i2s.setBuffers(6, SIZE * sizeof(int16_t) / sizeof(uint32_t)); if(!i2s.begin(48000)){ Serial.println("I2S error!"); while(100); } } int32_t last = 0; int frame = 0; void loop() { int16_t l, r; i2s.read16(&l, &r); // float sine_pos = (2.0f * M_PI * 1000.0f * (float)frame) / (float)48000; // l = (int16_t)(sin(sine_pos) * 8192.0f); // r = l; i2s.write16(l, r); // volume += l + r; // if(millis() - last > 1000){ // Serial.println(volume); // volume = 0; // last = millis(); // // STATUS FLAGS // Serial.println("CODEC STATUS"); // cw(0x00, 0x00); // select page 0 // Serial.println("ADC Flags"); // cr(0x24, 1); // Serial.println("DAC Flags"); // cr(0x25, 1); // Serial.println("P0_42 - Sticky Flags"); // cr(0x2A, 1); // Serial.println("P0_43 - Interrupt Flags"); // cr(0x2B, 1); // Serial.println("P0_44 - Sticky Flags"); // cr(0x2C, 1); // } frame++; if(frame == 48000) frame = 0; }