40 Commits

Author SHA1 Message Date
cef092f494 reading 512k works, but hangs the cpu when trying to play 5 samples 2025-06-30 10:35:18 +02:00
d44210ce59 found some bugs now 4 samples play simultaneous without errors 2025-06-30 09:44:44 +02:00
7418cdfd35 ringbuffer changes, but still broken with multiple samples 2025-06-30 00:47:28 +02:00
ad035e69e2 dma and pointer optimization, but still no luck 2025-06-24 01:28:47 +02:00
d5ea2377f9 ringbuffer with DMA memcpy, but i2s is broken 2025-06-23 01:41:46 +02:00
b9130dc0ae multicore working barely 2025-06-22 14:30:09 +02:00
b4f504b21d trying out both cores - 1 for ui and 0 for sound - sound not working yet 2025-06-22 03:58:55 +02:00
6bcc37d3ee small vibration struct fix 2025-06-22 03:16:34 +02:00
8858d41806 sampler at 80 percent 2025-06-21 01:21:42 +02:00
ffdbe9fa6d sampling in progress 2025-06-20 15:52:02 +02:00
6ef94390a5 almost a complete sequencer... almost 2025-06-18 19:11:28 +02:00
6dd3acac2f sequencer timing basics done 2025-06-18 12:54:34 +02:00
4a04e95757 readme update 2025-06-17 16:29:03 +02:00
06642bd570 beeps and clicks and more config options for colors 2025-06-17 16:19:42 +02:00
07323ec068 readme update 2025-06-17 12:20:52 +02:00
e2eaa1b5b1 readme update 2025-06-17 12:10:54 +02:00
3b63123c76 cpu overloading playing 8 streams at once 2025-06-16 01:31:09 +02:00
ecbd6ab3ee better audio with only a few glitches left 2025-06-15 02:52:54 +02:00
76f2e0ec28 waves playing again, still xruns 2025-06-13 02:35:31 +02:00
b78060aac2 debugging 2025-06-12 19:21:24 +02:00
c1e204953f dac working, wave playback broken WIP 2025-06-11 01:59:23 +02:00
ac9d4b5e6b more wave file parsing WIP -> weiter in OF 2025-06-06 11:41:35 +02:00
db463c5b8c wave file parser WIP 2025-06-06 10:22:29 +02:00
55bcb2c389 volume control added 2025-06-06 02:07:30 +02:00
8cd690edbd speaker 2025-06-05 17:49:04 +02:00
120a802840 speaker function added 2025-06-05 12:30:51 +02:00
e58b4ff968 pcb speakers working, turned off again 2025-06-04 10:22:59 +02:00
76ff73791a 8 simultaneous streams working, but playback has artifacts 2025-06-04 10:20:37 +02:00
15733e8b36 streaming max 4 stereo wave files at the same time 2025-06-04 02:24:28 +02:00
c3adf740bf ringbuffer skeleton added 2025-06-03 16:02:52 +02:00
a1efe3cc10 ui and sound together is almost ok but not quite there. occasional xruns 2025-06-03 01:16:31 +02:00
ef52d50b7c structuring code 2025-06-02 01:31:56 +02:00
c1ca96793c feierabend 2025-06-01 02:33:01 +02:00
a3a4fd4fb4 The beginnings of codec.h 2025-06-01 01:09:35 +02:00
a17cefb4ba Codec ok, transients are quite rounded. Maybe hardware, maybe codec settings. 2025-05-30 01:54:45 +02:00
4da1c8fa9d Codec ADC gain and DAC volume settings optimized, but not perfect yet 2025-05-29 18:47:41 +02:00
2ffd1997b9 I2S loopback working! 2025-05-29 18:06:39 +02:00
549fa21d1a Codec working in bypass mode. I2S not working yet. 2025-05-29 03:19:54 +02:00
cd1b0934aa introduced lookup table for led ring cw 2025-05-28 01:41:12 +02:00
686f76b0fd merged fastled into main 2025-05-28 00:48:38 +02:00
11 changed files with 2038 additions and 247 deletions

100
README.md
View File

@ -9,26 +9,118 @@
- the board will go into bootloader mode and appear as USB thumb drive
6. Copy the `soundcube-firmware.ino.uf2` file to the thumb drive and wait for the board to restart
## config.txt
## SD Card contents
```
config.txt
sound/
├─ 1.wav
├─ 2.wav
├─ 3.wav
├─ 4.wav
├─ 5.wav
├─ 6.wav
├─ 7.wav
├─ 8.wav
ui/
├─ click.wav
├─ beep.wav
```
### config.txt
Json formatted config file. For now only edge led color working.
```
{
"boxid":"",
"edge": {
"color":{
"idle":{
"r":50,
"g":0,
"b":0
"b":50
},
"active":{
"r":0,
"g":50,
"b":50
}
}
},
"ring": {
"color":{
"idle":{
"r":0,
"g":50,
"b":50
},
"active":{
"r":0,
"g":80,
"b":50
}
}
}
}
```
## click.wav (not played correctly)
## Sound
Put a file called `click.wav` (not longer than a few seconds) in the root of the SD card and it will play when you press a button.
### UI
There are two UI sounds - `click.wav` and `beep.wav`.
- `click.wav` is played when a button is pressed other than the select button
- `beep.wav` is played when the rotary encoder select button is pressed
Put these files in the subfolder `ui` on the SD card.
#### Wave File Format for UI Sounds
`click.wav` needs to be **22050Hz (22kHz) 16bit Mono**
### Audio Out or Speakers
Put all sounds into the `/sound` subfolder. Name them `1.wav, 2.wav, 3.wav...`
#### Wave File Format for Audio Out and Speakers
Export all sounds as **48000Hz (48kHz) 16bit Stereo**.
### Audacity
You can use Audacity to export all soundfiles to WAV format.
Download it here [Github](https://github.com/audacity/audacity/releases)
1. Load file into Audacity
2. Select Track
3. File -> Export Audio
#### Format options in Audacity
**Audio Out**
- WAV(Microsoft)
- Chanels: Stereo
- Samplerate: 48000Hz
- Encoding: Signed 16-bit PCM
**UI**
- WAV(Microsoft)
- Channels: Mono
- Samplerate: 22050Hz
- Encoding: Signed 16-bit PCM
----
## Code something yourself

386
soundcube-firmware/codec.h Normal file
View File

@ -0,0 +1,386 @@
#pragma once
#include <cstdint>
#include <Wire.h>
#ifndef DEBUG
#define DEBUG false
#endif
// class TLV320AIC3204_Settings{
// public:
// TwoWire *wire;
// uint8_t i2cAddress = 0x18;
// ClockSettings1 clock_settings_1 = ClockSettings1(i2cAddress, wire);
// };
uint8_t logain[36] = {58,59,60,61,62,63,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29};
class TLV320AIC3204{
public:
TLV320AIC3204() : wire(&Wire) {}
TLV320AIC3204(TwoWire *wire) : wire(wire) {}
void begin(){init();};
void begin(TwoWire *_wire) {
wire = _wire;
init();
}
void begin(uint8_t i2cAddress, TwoWire *_wire) {
i2cAddress = i2cAddress;
wire = _wire;
init();
}
void init(){
// GENERAL
cw(0x00, 0x00); // select page 0
cw(0x01, 0x01); // soft reset
cw(0x1b, 0b00000000); // select I2S with 16 bit word length
cw(0x1d, 0b00000000); // disable loopback
// POWER and CM
cw(0x00, 0x01); // select page 1
cw(0x01, 0b00001000); // disable weak (crude) AVdd connection to DVdd
cw(0x02, 0b01011001); // enable internal AVdd LDO and enable analog blocks
cw(0x09, 0b00001100); // power up LOL, LOR, power down MAL, MAR, HPL, HPR
cw(0x0a, 0b01000000); // set full chip CM to 0.75V
cw(0x47, 0b00110011); // analog input quick charge time 1.6ms
// ROUTING
cw(0x00, 0x01); // select page 1
cw(0x34, 0b10000000); // LEFT MICPGA P route IN1L to LEFT_P with 40k input impedance
cw(0x36, 0b10000000); // LEFT MICPGA M route CM to LEFT_M with 20k input impedance
//cw(0x36, 0b00000011); // LEFT MICPGA M route CM to LEFT_M with 20k input impedance
cw(0x37, 0b10000000); // RIGHT MICPGA P route IN1R to RIGHT_P with 20k input impedance
cw(0x39, 0b10000000); // RIGHT MICPGA M route CM to RIGHT_M with 20k input impedance
//cw(0x39, 0b00000011); // RIGHT MICPGA M route CM to RIGHT_M with 20k input impedance
cw(0x3a, 0b00111100); // connect IN2, IN3 weakly to CM
// GAIN
cw(0x00, 0x01); // select page 1
cw(0x3b, 0b00000000); // unmute left MICPGA, set gain to 0db
cw(0x3c, 0b00000000); // unmute right MICPGA, set gain to 0db
// VOLUME
cw(0x00, 0x01); // select page 1
cw(0x16, 0b01110101); // MUTE IN1L to HPL
cw(0x17, 0b01110101); // MUTE IN1R to HPR
// ADC
cw(0x00, 0x00); // select page 0
cw(0x12, 0x81); // NADC 1
cw(0x13, 0x82); // MADC 2
cw(0x14, 0b10000000); // OSR ADC 128
//cw(0x14, 0b01000000); // OSR ADC 128
cw(0x3d, 0b00000001); // ADC PRB_R3 = 11, PRB_R2 = 10, PRB_R1 = 01
cw(0x00, 0x01); // select page 1
cw(0x3d, 0b00000000); // ADC PTM_R4
// DAC
cw(0x00, 0x00); // select page 0
cw(0x0b, 0x81); // NDAC 1
cw(0x0c, 0x82); // MDAC 2
cw(0x0d, 0x00); // OSR DAC 128
cw(0x0e, 0x80); // OSR DAC 128
cw(0x1b, 0b00000000); // word length 16bits
cw(0x3c, 0b00000001); // PRB_P3
cw(0x00, 0x01); // select page 1
cw(0x7b, 0b00000001); // set REF charging time to 40ms
// ROUTING
cw(0x00, 0x01); // select page 1
cw(0x0e, 0b00001000); // left DAC reconstruction filter routed to LOL
cw(0x0f, 0b00001000); // right DAC reconstruction filter routed to LOR
cw(0x03, 0b00000000); // DAC PTM_P3/4
cw(0x04, 0b00000000); // DAC PTM_P3/4
// LO GAIN
cw(0x00, 0x01);
cw(0x12, 0b00000000); // LOL gain 0dB
cw(0x13, 0b00000000); // LOR gain 0dB
// POWER UP
// ADC
cw(0x00, 0x00); // select page 0
cw(0x51, 0b11000000); // power up ADC
cw(0x52, 0b00000000); // unmute ADC
cw(0x3f, 0b11010100); // power up and route left digital audio to left dac channel and right to right
cw(0x40, 0x00); // unmute DAC digital volume
// DAC VOLUME 0b00000000 = 0dB, 10000001 = -63.5dB, 0b00110000 = +24dB
cw(0x00, 0x00); // select page 0
cw(0x41, 0b11110001); // LEFT
cw(0x42, 0b11110001); // RIGHT
// ADC VOLUME 0b1101000 = -12dB, 0b00000000 = 0dB, 0b0101000 = +20dB
cw(0x00, 0x00); // select page 0
cw(0x53, 0b01110000); // LEFT
cw(0x54, 0b01110000); // RIGHT
// // STATUS FLAGS
// Serial.println("CODEC STATUS");
// cw(0x00, 0x00); // select page 0
// Serial.println("ADC Flags");
// cr(0x24, 1);
// Serial.println("DAC Flags");
// cr(0x25, 1);
// Serial.println("P0_42 - Sticky Flags");
// cr(0x2A, 1);
}
// void softReset(){}; // 0x00 0x01
// void hardReset(){}; // reset pin
// void powerUp(){}; // power up
void setMicPgaGain(int gainLeft, int gainRight); // 0 - 47.5dB in 0.5dB steps
void setMicPgaGainL(int gain);
void setMicPgaGainR(int gain);
void mute(bool muteState){
muteL(muteState);
muteR(muteState);
}
void muteL(bool muteState){
uint8_t mutevol = (muteState << 7) + logain[volumeL];
cw(0x00, 0x01);
cw(0x12, mutevol);
muteStateL = muteState;
}
void muteR(bool muteState){
uint8_t mutevol = (muteState << 7) + logain[volumeR];
cw(0x00, 0x01);
cw(0x13, mutevol);
muteStateR = muteState;
}
// set LOL and LOR gain from 0 (-6dB) to 35 (29dB)
void setLineOutVolume(int volume){
setLineOutVolumeL(volume);
setLineOutVolumeR(volume);
cw(0x00, 0x01);
crd(0x12, 1);
}
void setLineOutVolumeL(int volume){
volume = max(0, min(35, volume));
uint8_t mutevol = (muteStateL << 7) + logain[volume];
cw(0x00, 0x01);
cw(0x12, mutevol); // LOL gain 0dB
volumeL = volume;
}
void setLineOutVolumeR(int volume){
volume = max(0, min(35, volume));
uint8_t mutevol = (muteStateR << 7) + logain[volume];
cw(0x00, 0x01);
cw(0x13, mutevol); // LOR gain 0dB
volumeR = volume;
}
void volumeUp(){
volumeL++;
volumeR++;
setLineOutVolumeL(volumeL);
setLineOutVolumeR(volumeR);
}
void volumeDown(){
volumeL--;
volumeR--;
setLineOutVolumeL(volumeL);
setLineOutVolumeR(volumeR);
}
uint8_t getVolumeL(){
uint8_t vol[1];
cw(0x00, 0x01);
cr(0x12, vol, 1);
return vol[0];
}
uint8_t getVolumeR(){
uint8_t vol[1];
cw(0x00, 0x01);
cr(0x13, vol, 1);
return vol[0];
}
private:
TwoWire *wire;
uint8_t i2cAddress = 0x18;
bool muteStateL = 0;
bool muteStateR = 0;
uint8_t volumeL = 0;
uint8_t volumeR = 0;
void cw(unsigned char first, unsigned char second){
wire->beginTransmission(i2cAddress);
wire->write(first);
wire->write(second);
int result = wire->endTransmission();
if(DEBUG){
Serial.print(i2cAddress, HEX);
Serial.print(" ");
Serial.print(first, HEX);
Serial.print(" ");
Serial.print(second, HEX);
Serial.print(" : ");
if(result == 0) {
Serial.println("OK");
} else {
Serial.print("ERROR: ");
Serial.println(result);
}
}
delay(5);
}
void cr(unsigned char first, uint8_t result[], size_t len){
wire->beginTransmission(i2cAddress);
wire->write(first); // set register for read
wire->endTransmission(false); // false to not release the line
wire->requestFrom(i2cAddress, len, true);
wire->readBytes(result, len);
if(DEBUG){
Serial.print(first, HEX);
Serial.print(" ");
for (int i = 0; i < len; i++) {
Serial.print(result[i], HEX);
Serial.print(" ");
Serial.println(result[i], BIN);
}
}
}
void crd(unsigned char first, size_t len){
wire->beginTransmission(0x18);
wire->write(first); // set register for read
wire->endTransmission(false); // false to not release the line
wire->requestFrom(0x18, len, true); // request bytes from register XY
Serial.print(first, HEX);
Serial.print(" ");
byte buff[len];
wire->readBytes(buff, len);
for (int i = 0; i < len; i++) {
Serial.print(buff[i], HEX);
Serial.print(" ");
Serial.println(buff[i], BIN);
}
}
// TLV320AIC3204_Settings settings;
};
/*
// GENERAL
cw(0x00, 0x00); // select page 0
cw(0x01, 0x01); // soft reset
cw(0x1b, 0b00000000); // select I2S with 16 bit word length
cw(0x1d, 0b00000000); // disable loopback
// POWER and CM
cw(0x00, 0x01); // select page 1
cw(0x01, 0b00001000); // disable weak (crude) AVdd connection to DVdd
cw(0x02, 0b00000001); // enable internal AVdd LDO and enable analog blocks
cw(0x09, 0b00001100); // power up LOL, LOR, power down MAL, MAR, HPL, HPR
cw(0x0a, 0b00001000); // set full chip CM to 0.75V
cw(0x47, 0b00110011); // analog input quick charge time 1.6ms
// ROUTING
cw(0x00, 0x01); // select page 1
cw(0x34, 0b10000000); // LEFT MICPGA P route IN1L to LEFT_P with 40k input impedance
//cw(0x36, 0b11000000); // LEFT MICPGA M route CM to LEFT_M with 20k input impedance
//cw(0x36, 0b00000011); // LEFT MICPGA M route CM to LEFT_M with 20k input impedance
cw(0x37, 0b10000000); // RIGHT MICPGA P route IN1R to RIGHT_P with 20k input impedance
//cw(0x39, 0b11000000); // RIGHT MICPGA M route CM to RIGHT_M with 20k input impedance
//cw(0x39, 0b00000011); // RIGHT MICPGA M route CM to RIGHT_M with 20k input impedance
cw(0x3a, 0b00111100); // connect IN2, IN3 weakly to CM
// GAIN
cw(0x00, 0x01); // select page 1
cw(0x3b, 0b00000000); // unmute left MICPGA, set gain to 0db
cw(0x3c, 0b00000000); // unmute right MICPGA, set gain to 0db
// VOLUME
cw(0x00, 0x01); // select page 1
cw(0x16, 0b01110101); // MUTE IN1L to HPL
cw(0x17, 0b01110101); // MUTE IN1R to HPR
// ADC
cw(0x00, 0x00); // select page 0
cw(0x12, 0x81); // NADC 1
cw(0x13, 0x82); // MADC 2
cw(0x14, 0b10000000); // OSR ADC 128
//cw(0x14, 0b01000000); // OSR ADC 128
cw(0x3d, 0b00000001); // ADC PRB_R3 = 11, PRB_R2 = 10, PRB_R1 = 01
cw(0x00, 0x01); // select page 1
cw(0x3d, 0b00000000); // ADC PTM_R4
// DAC
cw(0x00, 0x00); // select page 0
cw(0x0b, 0x81); // NDAC 1
cw(0x0c, 0x82); // MDAC 2
cw(0x0d, 0x00); // OSR DAC 128
cw(0x0e, 0x80); // OSR DAC 128
cw(0x1b, 0b00000000); // word length 16bits
cw(0x3c, 0b00000001); // PRB_P3
cw(0x00, 0x01); // select page 1
cw(0x7b, 0b00000001); // set REF charging time to 40ms
// ROUTING
cw(0x00, 0x01); // select page 1
cw(0x0e, 0b00001000); // left DAC reconstruction filter routed to LOL
cw(0x0f, 0b00001000); // right DAC reconstruction filter routed to LOR
cw(0x03, 0b00000000); // DAC PTM_P3/4
cw(0x04, 0b00000000); // DAC PTM_P3/4
// LO GAIN
cw(0x00, 0x01);
cw(0x12, 0b00000001); // LOL gain 0dB
cw(0x13, 0b00000001); // LOR gain 0dB
// POWER UP
// ADC
cw(0x00, 0x00); // select page 0
cw(0x51, 0b11000000); // power up ADC
cw(0x52, 0b00000000); // unmute ADC
cw(0x3f, 0b11010100); // power up and route left digital audio to left dac channel and right to right
cw(0x40, 0x00); // unmute DAC digital volume
// DAC VOLUME 0b00000000 = 0dB, 10000001 = -63.5dB, 0b00110000 = +24dB
cw(0x00, 0x00); // select page 0
cw(0x41, 0b11111001); // LEFT
cw(0x42, 0b11111001); // RIGHT
// ADC VOLUME 0b1101000 = -12dB, 0b00000000 = 0dB, 0b0101000 = +20dB
cw(0x00, 0x00); // select page 0
cw(0x53, 0b01110000); // LEFT
cw(0x54, 0b01110000); // RIGHT
*/

View File

@ -0,0 +1,106 @@
#pragma once
class RingBuffer{
public:
RingBuffer() {}
RingBuffer(size_t size) : bufferSize(size) {}
void setSize(size_t size) {
bufferSize = size;
}
void begin(){
buffer = new int16_t[bufferSize];
}
bool push(int16_t data){
if(counter < bufferSize){
buffer[write] = data;
write++; // % bufferSize;
if(write == bufferSize) write = 0;
counter++;
return true;
}
return false;
}
int16_t pop(){
int16_t retval = 0;
if(counter > 0) {
counter--;
retval = buffer[read];
read++;// % bufferSize;
if(read == bufferSize) read = 0;
}
return retval;
}
int16_t* getReadPointer(){
return &buffer[read];
}
void pointerPop(int nbytes){
for(int i=0; i<nbytes / 2; ++i){
if(counter > 0) {
counter--;
read++;// % bufferSize;
if(read == bufferSize) read = 0;
}
}
}
void pushDMA(int32_t *source){
if(counter < bufferSize){
rp2040.memcpyDMA(&buffer[write], source, 4);
write += 2; // % bufferSize;
if(write == bufferSize) write = 0;
counter += 2;
}
}
void* getWritePointer(){
return &buffer[write];
}
void advance(int nbytes){
for(int i = 0; i < nbytes/2; ++i){
if(counter < (bufferSize-1)){
write++; // % bufferSize;
if(write == bufferSize) write = 0;
counter++;
}
}
}
void popDMA(int32_t *target){
if(counter > 1) {
counter -= 2;
rp2040.memcpyDMA(target, &buffer[read], 4);
read += 2;
if(read >= bufferSize) read = 0;
}
}
bool isEmpty(){
return counter == 0;
}
bool isFull(){
return counter == (bufferSize-2);
}
int size(){
return counter;
}
int remains(){
return (bufferSize-2) - counter;
}
private:
size_t bufferSize = 0;
int counter = 0;
int write = 0;
int read = 0;
int16_t *buffer;
};

View File

@ -3,54 +3,140 @@
#include <TCA9555.h>
#include <AS5600.h>
//#include <Adafruit_NeoPixel.h>
#include <DAC8552.h>
#define FASTLED_FORCE_SOFTWARE_SPI
#include <FastLED.h>
#include <PWMAudio.h>
#include <I2S.h>
#include <SPI.h>
#include <SD.h>
#include "codec.h"
#include "wavestream.h"
bool core1_separate_stack = true;
bool core1_disable_systick = true;
#define HAPTIC 1
#define AURAL 1
#define UI_SAMPLERATE 22050
#define BUFFERSIZE 256
#define NSTREAMS 16
I2S i2s(INPUT_PULLUP);
int16_t buffer[BUFFERSIZE];
WaveStream stream[NSTREAMS];
TLV320AIC3204 codec;
TCA9555 TCA(0x20, &Wire1);
AS5600 ENC(&Wire1);
PWMAudio ui_snd(8);
DAC8552 dac(9, &SPI1);
enum BUTTON {CVINL, CVINR, INL, INR, OUTR, OUTL, CVOUTR, CVOUTL, RIGHT, LEFT, SELECT, DEBUG1, DEBUG2, DEBUG3};
PWMAudio ui_snd(8);
CRGB ui_leds[74];
CRGB edge_leds[11];
//Adafruit_NeoPixel ui_pixels(74, 5, NEO_GRB + NEO_KHZ800);
//Adafruit_NeoPixel edge_pixels(11, 4, NEO_GRB + NEO_KHZ800);
enum STATE {BANK, SAMPLE, SEQUENCE, CTEMPO};
STATE state = BANK;
//enum BUTTON {CVINL, CVINR, INL, INR, OUTR, OUTL, CVOUTR, CVOUTL, RIGHT, LEFT, SELECT, DEBUG1, DEBUG2, DEBUG3};
enum BUTTON {MODE, LOOP, INL, INR, OUTR, OUTL, TEMPO, RESET, BACK, POWER, SELECT, DEBUG1, DEBUG2, DEBUG3};
volatile bool flag = false;
volatile bool click = false;
volatile bool amp = false;
int lut_ring_cw[48] = {39,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,50,49,48,47,46,45,44,43,42,41,40};
int lut_ring_ccw[48] = {40,41,42,43,44,45,46,47,48,49,50,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39};
int lut_ring_cw_3[48] = {40,39,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,50,49,48,47,46,45,44,43,42,41};
int lut_ring_ccw_3[48] = {39,40,41,42,43,44,45,46,47,48,49,50,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38};
int lut_matrix[13] = {56,55,57,58,59,62,61,60,63,64,65,67,66};
int lut_banks[4] = {56,55,67,66};
int lut_samples[4] = {62,58,60,64};
int active = 0;
int active_led_ring = 0;
int selected_bank = 0;
int selected_sample = 0;
uint32_t lastTime = 0;
int32_t position = 0;
volatile bool setup0_finished = false;
volatile bool setup1_finished = false;
volatile bool buttonChanged = false;
volatile bool sdInitialized = false;
volatile bool wire_ready = false;
volatile bool ui_click = false;
volatile bool ui_beep = false;
bool amp = false;
volatile bool streams_loaded = false;
bool speakerToggle = false;
bool sd_card_detected = false;
volatile bool i2s_ready = false;
volatile bool codec_ready = false;
volatile bool config_loaded = false;
bool buttons[16] = {false};
int buttonsDir[16] = {0};
int counter = 0;
bool buttons[16] = {false};
int16_t ui_click_snd[UI_SAMPLERATE];
uint16_t click_length = 0;
int16_t beep[UI_SAMPLERATE];
int16_t ui_beep_snd[UI_SAMPLERATE];
uint16_t beep_length = 0;
bool sd_card_detected = false;
struct Color {
int r;
int g;
int b;
int r_active;
int g_active;
int b_active;
};
struct Config {
int edge_color_r = 0;
int edge_color_g = 0;
int edge_color_b = 50;
String boxid = "";
Color edge_color = {0,0,50,0,50,0};
Color ring_color = {0,50,50,0,80,50};
String sampleFiles[16];
int bpm = 90;
};
Config config;
struct Sample{
float volume = 1.0;
WaveStream *file;
};
Sample samples[NSTREAMS];
struct SequenceStep{
int len = 0;
Sample *samples[4];
void trigger(){
for(int i = 0; i < len; i++){
samples[i]->file->play(true);
}
}
};
SequenceStep steps[16];
void loadConfiguration(Config& config) {
File file = SD.open("/config.txt");
JsonDocument doc;
@ -58,23 +144,89 @@ void loadConfiguration(Config& config) {
DeserializationError error = deserializeJson(doc, file);
if(error) Serial.println(F("Failed to read file, using default configuration"));
config.edge_color_r = doc["edge"]["color"]["r"] | 0;
config.edge_color_g = doc["edge"]["color"]["g"] | 0;
config.edge_color_b = doc["edge"]["color"]["b"] | 50;
config.edge_color.r = doc["edge"]["color"]["idle"]["r"] | 0;
config.edge_color.g = doc["edge"]["color"]["idle"]["g"] | 0;
config.edge_color.b = doc["edge"]["color"]["idle"]["b"] | 50;
config.edge_color.r_active = doc["edge"]["color"]["active"]["r"] | 0;
config.edge_color.g_active = doc["edge"]["color"]["active"]["g"] | 50;
config.edge_color.b_active = doc["edge"]["color"]["active"]["b"] | 0;
//strlcpy(config.hostname, doc["hostname"] | "example.com", sizeof(config.hostname));
config.ring_color.r = doc["ring"]["color"]["idle"]["r"] | 0;
config.ring_color.g = doc["ring"]["color"]["idle"]["g"] | 50;
config.ring_color.b = doc["ring"]["color"]["idle"]["b"] | 50;
config.ring_color.r_active = doc["ring"]["color"]["active"]["r"] | 0;
config.ring_color.g_active = doc["ring"]["color"]["active"]["g"] | 80;
config.ring_color.b_active = doc["ring"]["color"]["active"]["b"] | 50;
JsonArray _sampleFiles = doc["samples"];
config.boxid = doc["boxid"].as<String>();
int i = 0;
for(JsonVariant item : _sampleFiles){
config.sampleFiles[i] = item.as<String>();
i++;
}
file.close();
}
size_t count;
size_t tape_write = 0;
void codec_transmit() {
for(int i = 0; i < count; i+=2){
if(streams_loaded){
for(int k = 0; k < NSTREAMS; k++){
//int32_t twosamples;
int16_t twosamples[2];
if(stream[k].isPlaying()){
stream[k].getDMA((int32_t*)&twosamples);
int16_t sample_l = twosamples[0];// >> 16;
int16_t sample_r = twosamples[1];// & 0xFFFF;
// int16_t *sample_l = stream[k].wavefile.buffer.getReadPointer(); //twosamples >> 16;
// stream[k].wavefile.buffer.pointerPop(2);
// int16_t *sample_r = stream[k].wavefile.buffer.getReadPointer(); //twosamples & 0xFFFF;
// stream[k].wavefile.buffer.pointerPop(2);
// buffer[i] += (*sample_l / 16);
// buffer[i+1] += (*sample_r / 16);
buffer[i] += (sample_l / 16);
buffer[i+1] += (sample_r / 16);
}
}
}
}
i2s.write((const uint8_t *)&buffer, count * sizeof(int16_t));
}
void codec_receive(){
count = i2s.read((uint8_t *)&buffer, BUFFERSIZE * sizeof(int16_t)) * sizeof(uint32_t) / sizeof(int16_t);
for(int i = 0; i < count; i++){
buffer[i] *= -1;
}
}
void pwm_audio_callback() {
while (ui_snd.availableForWrite()) {
if(click) {
ui_snd.write(beep[counter]);
if(ui_click || ui_beep) {
if(ui_beep) {
ui_snd.write(ui_beep_snd[counter]);
counter++;
if(counter == beep_length) {
counter = 0;
click = false;
ui_beep = false;
}
continue;
}
if(ui_click) {
ui_snd.write(ui_click_snd[counter]);
counter++;
if(counter == click_length) {
counter = 0;
ui_click = false;
}
}
} else {
digitalWrite(7, LOW);
@ -84,122 +236,313 @@ void pwm_audio_callback() {
}
}
void tca_irq() {
flag = true;
}
void setup() {
Serial.begin();
delay(2000);
FastLED.addLeds<NEOPIXEL, 4>(edge_leds, 11);
FastLED.addLeds<NEOPIXEL, 5>(ui_leds, 74);
pinMode(21, INPUT_PULLUP);
sd_card_detected = !digitalRead(21);
delay(500);
bool sdInitialized = SD.begin(22, 23, 24);
delay(100);
if(!sdInitialized) sdInitialized = SD.begin(22, 23, 24); // hack to prevent SD card from not initializing after soft reset
if(sdInitialized) loadConfiguration(config);
if(sdInitialized && SD.exists("/click.wav")) {
File click = SD.open("/click.wav");
bool load_ui_sounds(const char* file, int16_t *buffer, uint16_t &length){
if(SD.exists(file)) {
File f_click = SD.open(file);
f_click.seek(44, SeekSet);
int click_bytes = 0;
int16_t maxv = 0;
while (click.available() || click_bytes == UI_SAMPLERATE-1) {
int16_t sample = click.read() * 32;
if(abs(sample) > maxv) maxv = sample;
beep[click_bytes] = sample;
while (f_click.available() && click_bytes < UI_SAMPLERATE) {
uint8_t samplebyte[2];
f_click.read(samplebyte, 2);
int16_t sample = (samplebyte[1] << 8) + samplebyte[0];
buffer[click_bytes] = sample;
click_bytes++;
}
click.close();
beep_length = click_bytes;
Serial.print("Read ");
Serial.print(beep_length);
Serial.print(" bytes from click.wav into beep array. maxV was ");
Serial.println(maxv);
f_click.close();
length = click_bytes;
return true;
} else {
for(int i = 0; i < UI_SAMPLERATE; i++){
float sine_pos = (2.0f * M_PI * 8000.0f * (float)i) / (float)UI_SAMPLERATE;
beep[i] = (int16_t)(sin(sine_pos) * 8000.0f);
float sine_pos = (2.0f * M_PI * 3000.0f * (float)i) / (float)UI_SAMPLERATE;
buffer[i] = (int16_t)(sin(sine_pos) * 8000.0f);
}
Serial.println("Synthesized 8kHz sine into beep array.");
beep_length = UI_SAMPLERATE;
length = UI_SAMPLERATE;
}
return false;
}
Serial.println("INIT WIRE");
bool load_samples(){
for(int i = 0; i < NSTREAMS; i++){
stream[i].begin();
char filename[64];
sprintf(filename, "/sound/%s/%s", config.boxid.c_str(), config.sampleFiles[i].c_str());
Serial.println(filename);
if(SD.exists(filename)){
bool loaded = stream[i].load(SD.open(filename));
if(loaded) {
Serial.print("file read: ");
Serial.print(stream[i].wavefile.length);
Serial.print(" bytes | ");
Serial.print(stream[i].wavefile.samplerate);
Serial.print(" kHz | ");
Serial.print(stream[i].wavefile.bitspersample);
Serial.print(" bits | ");
Serial.print(stream[i].wavefile.channels);
Serial.print(" channels | ");
Serial.print(stream[i].wavefile.blockalign);
Serial.println(" bytes");
//stream[i].wavefile.loop = true;
} else {
Serial.println("file loading error");
}
} else {
for(int k = 0; k < 3; k++){
digitalWrite(6, HIGH);
delay(20);
digitalWrite(6, LOW);
delay(25);
}
return false;
}
}
return true;
}
void tca_irq() {
buttonChanged = true;
}
void speaker(bool state){
digitalWrite(12, state ? HIGH : LOW);
digitalWrite(13, state ? HIGH : LOW);
}
struct Vibration{
int32_t last;
bool start = false;
bool wait = false;
uint16_t on = 0;
uint16_t off = 0;
int n = 1;
void update(){
int32_t delta = millis() - last;
if(start && !wait){
digitalWrite(6, HIGH);
start = false;
wait = true;
last = millis();
}
if(delta >= on && wait){
digitalWrite(6, LOW);
wait = false;
n--;
last = millis();
}
if(delta >= off && n > 0){
start = true;
last = millis();
}
}
void trigger(int _n, int _on, int _off){
n = _n;
on = _on;
off = _off;
start = true;
last = millis();
}
};
Vibration vibration;
// -------------------------------------------- SETUP 0
void setup() {
//i2s.setSysClk(48000);
delay(500);
Serial.print("1: INIT WIRE: ");
Wire1.setSDA(2);
Wire1.setSCL(3);
Wire1.begin();
Serial.println("SUCCESS");
Serial.println("INIT TCA");
wire_ready = true;
Serial.print("1: INIT SPI: ");
SPI1.setSCK(10);
SPI1.setTX(11);
SPI1.begin();
Serial.println("SUCCESS");
delay(100);
Serial.print("1: ENABLE CODEC: ");
pinMode(20, OUTPUT); // CODEC reset (enable)
digitalWrite(20, HIGH);
Serial.println("SUCCESS");
Serial.print("1: ENABLE I2S MCLK: ");
pinMode(19, OUTPUT); // MCLK enable
digitalWrite(19, HIGH); // enable MCLK
Serial.println("SUCCESS");
Serial.print("1: STARTUP");
Serial.print("1: INIT TCA: ");
TCA.begin();
TCA.pinMode16(0xFFFF);
TCA.setPolarity16(0x0000);
Serial.println(" SUCCESS");
Serial.println("INIT INTERRUPT");
Serial.print("1: INIT TCA INTERRUPT: ");
pinMode(1, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(1), tca_irq, FALLING);
Serial.println("SUCCESS");
// Rotary Encoder
Serial.print("1: INIT ROTARY ENCODER: ");
ENC.begin(); // set direction pin.
ENC.setDirection(AS5600_COUNTERCLOCK_WISE);
ENC.setDirection(AS5600_CLOCK_WISE);
ENC.resetCumulativePosition();
Serial.println("SUCCESS");
Serial.print("1: INIT DAC: ");
dac.begin();
Serial.println("SUCCESS");
pinMode(6, OUTPUT); // Vibration Motor
pinMode(7, OUTPUT); // UI Amp Enable
ui_snd.onTransmit(pwm_audio_callback);
ui_snd.begin(UI_SAMPLERATE);
//ui_snd.onTransmit(pwm_audio_callback);
//ui_snd.begin(UI_SAMPLERATE);
digitalWrite(7, LOW);
digitalWrite(7, LOW); // UI amp off
Serial.print("1: INIT LEDS: ");
FastLED.addLeds<NEOPIXEL, 4>(edge_leds, 11);
FastLED.addLeds<NEOPIXEL, 5>(ui_leds, 74);
Serial.println("SUCCESS");
Serial.print("1: STARTUP COMPLETE");
setup1_finished = true;
digitalWrite(6, HIGH);
delay(50);
delay(25);
digitalWrite(6, LOW);
Serial.begin();
// i2s.setDOUT(14);
// i2s.setDIN(15);
// i2s.setBCLK(16); //
// i2s.swapClocks();
// i2s.setMCLK(18);
// i2s.setBitsPerSample(16);
// i2s.setFrequency(48000);
// i2s.setSysClk(48000);
// i2s.begin();
Serial.print("0: INIT CODEC: ");
codec.begin(&Wire1);
Serial.println("SUCCESS");
// while (1) {
// int16_t l, r;
// i2s.read16(&l, &r);
// i2s.write16(l, r);
// }
codec_ready = true;
pinMode(12, OUTPUT); // speaker enable l
pinMode(13, OUTPUT); // speaker enable r
speaker(false);
pinMode(21, INPUT_PULLUP);
sd_card_detected = !digitalRead(21);
delay(500);
while(!sdInitialized){
sdInitialized = SD.begin(22, 23, 24);
delay(250);
Serial.println("0: Initializing SD Card");
}
int active = 0;
int active_led_ring = 0;
if(sdInitialized) loadConfiguration(config);
uint32_t lastTime = 0;
int32_t position = 0;
if(sdInitialized){
load_ui_sounds("/ui/click.wav", ui_click_snd, click_length);
load_ui_sounds("/ui/beep.wav", ui_beep_snd, beep_length);
}
void loop() {
//ui_pixels.clear(); // Set all pixel colors to 'off'
//edge_pixels.clear(); // Set all pixel colors to 'off'
config_loaded = true;
if(sdInitialized) {
streams_loaded = load_samples();
}
if(streams_loaded) {
for(int i = 0; i < NSTREAMS; i++){
samples[i].file = &stream[i];
}
}
i2s.onTransmit(codec_transmit);
i2s.onReceive(codec_receive);
i2s.setDOUT(15);
i2s.setDIN(14);
i2s.setBCLK(16); // Note: LRCLK = BCLK + 1
i2s.setMCLK(18);
i2s.setMCLKmult(512); // 256 = 12.288.000Hz 512 = 25MHz
i2s.swapClocks();
// i2s.setFrequency(48000);
i2s.setBitsPerSample(16);
i2s.setBuffers(4, BUFFERSIZE * sizeof(int16_t) / sizeof(uint32_t));
if(!i2s.begin(48000)){
Serial.println("0: I2S error!");
while(100);
}
Serial.println("0: I2S OK");
delay(100);
i2s_ready = true;
Serial.print("0: STARTUP COMPLETE");
digitalWrite(6, HIGH);
delay(25);
digitalWrite(6, LOW);
setup0_finished = true;
setup1_finished = true;
}
void setup1(){
}
uint32_t last = 0;
volatile int bar = 0;
volatile int bar_old = -1;
int set_bar = 0;
int16_t angle = 0;
int32_t position_last = 0;
int16_t encdelta_raw = 0;
int16_t encdeltadiv = 512;
void loop1() {
if(setup0_finished && setup1_finished){
position = ENC.getCumulativePosition();
angle = ENC.readAngle();
encdelta_raw += (position - position_last);
// Serial.print(encdelta_raw);
// Serial.print(" \t");
int encdelta = 0;
if(abs(encdelta_raw) > encdeltadiv) {
encdelta = encdelta_raw > 0 ? 1 : -1;
encdelta_raw = 0;
}
// Serial.print(angle);
// Serial.print(" \t");
// Serial.print(position);
// Serial.print(" \t");
// Serial.print(position_last);
// Serial.print(" \t");
// Serial.print(encdelta_raw);
// Serial.print(" \t");
// Serial.println(encdelta);
sd_card_detected = !digitalRead(21);
if(sd_card_detected) edge_leds[8] = CRGB(0,25,0);
if(!sd_card_detected) edge_leds[8] = CRGB(25,0,0);
edge_leds[8] = sd_card_detected ? CRGB(0,10,0) : CRGB(10,0,0);
// EDGE LEDs
for (int i = 0; i < 8; i++) {
edge_leds[i] = CRGB(config.edge_color_r, config.edge_color_g, config.edge_color_b);
edge_leds[i] = CRGB(config.edge_color.r, config.edge_color.g, config.edge_color.b);
}
// LED Ring leeren
@ -207,61 +550,254 @@ void loop() {
ui_leds[i + 3] = CRGB(0, 0, 0);
}
// flag = true when a button is pushed
if (flag) {
int val = TCA.read16();
// Rotary button LEDs
ui_leds[0] = CRGB(0, 0, 0);
ui_leds[1] = CRGB(0, 0, 0);
ui_leds[2] = CRGB(0, 0, 0);
// buttonChanged = true when a button is pushed
if (buttonChanged) {
int buttonValues = TCA.read16();
bool buttonsNew[16] = {false};
bool buttonUp = false;
bool buttonDown = false;
for(int i = 0; i < 16; i++){
buttons[i] = ~(val >> i) & 0x01;
buttonsNew[i] = ~(buttonValues >> i) & 0x01;
if(buttonsNew[i] == true && buttons[i] == false) {
buttonsDir[i] = -1;
buttonDown = true;
}
if(buttonsNew[i] == false && buttons[i] == true) {
buttonsDir[i] = 1;
buttonUp = true;
}
buttons[i] = buttonsNew[i];
}
// Make vibration
if (HAPTIC) {
digitalWrite(6, HIGH);
delay(50);
digitalWrite(6, LOW);
if(HAPTIC && buttonDown) {
vibration.trigger(1, 25, 25);
}
// Make beep
if (AURAL) {
if(AURAL && buttonDown) {
digitalWrite(7, HIGH);
click = true;
ui_click = true;
}
// Flash led ring
for (int i = 0; i < 48; i++) {
ui_leds[i + 3] = CRGB(0, 15, 0);
if(buttons[TEMPO] && buttonDown){
state = CTEMPO;
}
// Switch through LED matrix
if(buttons[RIGHT]) active++;
if(buttons[LEFT]) active--;
if(active == 13) active = 0;
if(active == -1) active = 12;
flag = false;
if(buttons[BACK] && buttonDown){
}
// Rotary button LEDs
ui_leds[0] = CRGB(0, 0, 15);
ui_leds[1] = CRGB(0, 0, 15);
ui_leds[2] = CRGB(0, 0, 15);
switch(state){
case BANK:
encdeltadiv = 512;
encdelta_raw = 0;
encdelta = 0;
if(buttons[SELECT] && buttonDown){
state = SAMPLE;
}
break;
case SAMPLE:
encdeltadiv = 512;
encdelta_raw = 0;
encdelta = 0;
if(buttons[SELECT] && buttonDown){
state = SEQUENCE;
}
if(buttons[BACK] && buttonDown){
state = BANK;
}
break;
case SEQUENCE:
encdeltadiv = 256;
encdelta_raw = 0;
encdelta = 0;
if(buttons[SELECT] && buttonDown){
int n = steps[set_bar].len;
steps[set_bar].samples[n] = &samples[selected_bank*4 + selected_sample];
steps[set_bar].len = (steps[set_bar].len + 1) % 4;
}
if(buttons[BACK] && buttonDown){
state = SAMPLE;
}
break;
case CTEMPO:
encdeltadiv = 64;
encdelta_raw = 0;
encdelta = 0;
if(buttons[SELECT] && buttonDown){
state = BANK;
}
if(buttons[BACK] && buttonDown){
state = BANK;
}
break;
}
// Set bar
// if(buttons[BACK]) set_bar++;
// if(buttons[POWER]) set_bar--;
if(buttons[SELECT]){
// Flash encoder leds
ui_leds[0] = CRGB(0, 100, 50);
ui_leds[1] = CRGB(0, 100, 50);
ui_leds[2] = CRGB(0, 100, 50);
}
if(buttons[DEBUG1]) {
Serial.println("vol down");
codec.volumeDown();
}
if(buttons[DEBUG3]) {
Serial.println("vol up");
codec.volumeUp();
}
if(buttons[DEBUG2]) {
speakerToggle = !speakerToggle;
speaker(speakerToggle);
}
Serial.println(codec.getVolumeL());
buttonChanged = false;
}
// if(position < 0) position += 4096;
switch(state){
case BANK:
selected_bank += encdelta;
if(selected_bank == 4) selected_bank = 0;
if(selected_bank == -1) selected_bank = 3;
break;
case SAMPLE:
selected_sample += encdelta;
if(selected_sample == 4) selected_sample = 0;
if(selected_sample == -1) selected_sample = 3;
break;
case SEQUENCE:
set_bar += encdelta;
if(set_bar == 16) set_bar = 0;
if(set_bar == -1) set_bar = 15;
break;
case CTEMPO:
config.bpm += encdelta;
if(config.bpm < 15) config.bpm = 15;
if(config.bpm > 300) config.bpm = 300;
break;
}
//dac.setValue(0, dactest ? 0 : sin((float)millis() / 100.0f) * 32768 + 32768);
// empty LED matrix
for (int i = 0; i < 13; i++) {
ui_leds[i + 3 + 48 + 4] = CRGB(0, 0, 0);
for (int i = 0; i < 4; i++) {
ui_leds[lut_banks[i]] = CRGB(0, 0, 0);
ui_leds[lut_samples[i]] = CRGB(0,0,0);
}
// set active LED matrix LED
ui_leds[active + 3 + 48 + 4] = CRGB(255, 255, 255);
ui_leds[lut_banks[selected_bank]] = CRGB(100, 50, 50);
ui_leds[lut_samples[selected_sample]] = CRGB(100, 0, 50);
if(position < 0) position += 4096;
active_led_ring = (position / 32) % 48;
for(int i = 0; i < 48; i++){
int step = floor(i/3);
if(step == set_bar){
ui_leds[lut_ring_cw_3[i]] = CRGB(config.ring_color.r_active, config.ring_color.g_active, config.ring_color.b_active);
}
if(step == bar){
ui_leds[lut_ring_cw_3[i]] = CRGB(config.ring_color.r, config.ring_color.g, config.ring_color.b);
}
if(steps[step].len > 0) {
ui_leds[lut_ring_cw_3[i]] = CRGB(0, 10, 0);
}
// set active LED ring LED
ui_leds[active_led_ring + 3] = CRGB(255, 255, 255);
}
FastLED.show();
delay(1); // wait 1ms
if(buttonChanged){
for(int i = 0; i < 16; i++){
if(buttonsDir[i] == 1) buttonsDir[i] = 0;
}
}
vibration.update();
position_last = position;
delay(1);
}
}
//int sc = 0;
int streamcnt = 0;
void loop(){
if(setup1_finished && setup0_finished){
uint32_t delta_bpm = floor((60000 / config.bpm) / 16);
uint32_t delta = millis() - last;
if(delta >= delta_bpm) {
bar = (bar + 1) % 16;
if(steps[bar].len > 0) {
steps[bar].trigger();
}
if(streams_loaded) {
for(int i = 0; i < NSTREAMS; i++){
Serial.print(stream[i].wavefile.buffer.size());
Serial.print("\t");
}
Serial.println();
}
// Serial.print(delta_bpm);
// Serial.print(" ");
// Serial.println(delta);
last = millis();
}
if(streams_loaded) {
for(int i = 0; i < NSTREAMS; i++){
stream[i].streamChunk();
}
}
streamcnt = (streamcnt + 1) % 16;
// int16_t sample_l = 0;
// int16_t sample_r = 0;
//
// if(streams_loaded){
// for(int k = 0; k < NSTREAMS; k++){
// sample_l += stream[k].get() >> 2;
// sample_r += stream[k].get() >> 2;
// }
// }
//
// int16_t l = 0, r = 0;
// i2s.read16(&l, &r);
// l += sample_l;
// r += sample_r;
// i2s.write16(l, r);
if(i2s.getOverflow()) Serial.println("overflow");
if(i2s.getUnderflow()) Serial.println("underflow");
bar_old = bar;
}
}

View File

@ -0,0 +1,221 @@
#pragma once
#include <SD.h>
#include "ringbuffer.h"
struct WaveFile{
File file;
char cstart[4];
char cwave[4];
char cfmt[4];
bool load(File _file){
file = _file;
// RIFF Header
uint8_t start[4];
uint8_t size[4];
uint8_t wave[4];
file.seek(0, SeekSet);
file.read(start, 4);
memcpy(cstart, start, 4);
if(strcmp("RIFF", cstart) != 0) return false;
file.seek(4, SeekSet);
file.read(size, 4);
length = (size[3] << 24) + (size[2] << 16) + (size[1] << 8) + size[3] - 8;
file.seek(8, SeekSet);
file.read(wave, 4);
memcpy(cwave, wave, 4);
if(strcmp("WAVE", cwave) != 0) return false;
// FORMAT
uint8_t fmt[4];
uint8_t fmtLen[4];
uint8_t fmtTag[2];
uint8_t fmtChannels[2];
uint8_t fmtSamplerate[4];
uint8_t fmtBytesPerSecond[4];
uint8_t fmtBlockalign[2];
uint8_t fmtBitsPerSample[2];
file.seek(12, SeekSet);
file.read(fmt, 4);
memcpy(cfmt, fmt, 4);
if(strcmp("fmt ", cfmt) != 0) return false;
file.seek(20, SeekSet);
file.read(fmtTag, 4);
format = (fmtTag[1] << 8) + fmtTag[0];
if(format != 0x0001) return false;
file.seek(22, SeekSet);
file.read(fmtChannels, 2);
channels = (fmtChannels[1] << 8) + fmtChannels[0];
file.seek(24, SeekSet);
file.read(fmtSamplerate, 4);
samplerate = (fmtSamplerate[3] << 24) + (fmtSamplerate[2] << 16) + (fmtSamplerate[1] << 8) + fmtSamplerate[0];
file.seek(32, SeekSet);
file.read(fmtBlockalign, 2);
blockalign = (fmtBlockalign[1] << 8) + fmtBlockalign[0];
file.seek(34, SeekSet);
file.read(fmtBitsPerSample, 2);
bitspersample = (fmtBitsPerSample[1] << 8) + fmtBitsPerSample[0];
return true;
}
bool readblock(){
uint8_t samplebyte[blockalign];
file.read(samplebyte, blockalign);
if(!file.available() && loop) file.seek(44, SeekSet);
if(!file.available() && !loop) {
file.seek(44, SeekSet);
return false;
}
for(int i = 0; i < blockalign; i+=2){
int16_t sample = (samplebyte[i+1] << 8) + samplebyte[i];
buffer.push(sample);
}
return true;
}
bool readblockDMA(){
void *bufferStart = buffer.getWritePointer();
file.read((uint8_t*)bufferStart, 4);
buffer.advance(4);
if(!file.available() && loop) file.seek(44, SeekSet);
if(!file.available() && !loop) {
file.seek(44, SeekSet);
return false;
}
return true;
}
bool readblockSD(){
void *bufferStart = buffer.getWritePointer();
remains = buffer.remains();
if(remains > 512){
adv = file.readBytes((char*)bufferStart, 512);
buffer.advance(adv);
if(!file.available() && loop) file.seek(44, SeekSet);
if(!file.available() && !loop) {
file.seek(44, SeekSet);
return false;
}
}
return true;
}
int16_t get(){
return buffer.pop();
}
void stop(){
file.seek(44, SeekSet);
}
void reset(){
file.seek(44, SeekSet);
}
bool loop = false;
uint16_t format = 0;
uint32_t length = 0;
uint16_t channels = 0;
uint32_t samplerate = 0;
uint16_t blockalign = 0;
uint16_t bitspersample = 0;
int adv = 0;
int remains = 0;
RingBuffer buffer;
};
class WaveStream{
public:
WaveStream(){}
void begin(){
wavefile.buffer.setSize(2048);
wavefile.buffer.begin();
}
bool load(File _wavefile){
if(!wavefile.load(_wavefile)) return false;
return true;
}
void toggle(){playing = !playing;}
void play(bool reset = false){
if(reset) wavefile.reset();
playing = true;
}
void stop(){
playing = false;
wavefile.stop();
}
void pause(){playing = false;}
void stream(){
int cnt = 0;
while (!wavefile.buffer.isFull() && cnt < 1024) {
bool ok = wavefile.readblockDMA();
if(!ok) playing = false;
cnt += 2;
}
}
void streamChunk(){
if(!wavefile.buffer.isFull()){
bool ok = wavefile.readblockSD();
if(!ok) playing = false;
}
}
int16_t get(){
return playing ? wavefile.get() : 0;
}
int16_t* getPointer(){
int16_t* p = wavefile.buffer.getReadPointer();
wavefile.buffer.pointerPop(2);
return p;
}
void getDMA(int32_t *samples){
if(playing) wavefile.buffer.popDMA(samples);
}
bool isPlaying(){
return playing;
}
//private:
WaveFile wavefile;
bool playing = false;
};

View File

@ -0,0 +1,110 @@
#pragma once
#ifndef DEBUG
#define DEBUG false
#endif
struct CodecSettings{
CodecSettings(uint8_t i2c_address, TwoWire *wire) : wire(wire), i2cAddress(i2c_address) {}
TwoWire *wire;
uint8_t i2cAddress = 0x18;
uint8_t page;
uint8_t reg;
uint8_t len;
virtual uint8_t get() = 0;
void write(){
selectPage(page);
cw(reg, get());
}
void read(uint8_t result[]){
selectPage(page);
cr(reg, result, len);
}
void selectPage(int page){
cw(0x00, page);
}
void cw(unsigned char first, unsigned char second){
Wire1.beginTransmission(i2cAddress);
Wire1.write(first);
Wire1.write(second);
int result = Wire1.endTransmission();
if(DEBUG){
Serial.print(i2cAddress, HEX);
Serial.print(" ");
Serial.print(first, HEX);
Serial.print(" ");
Serial.print(second, HEX);
Serial.print(" : ");
if(result == 0) {
Serial.println("OK");
} else {
Serial.print("ERROR: ");
Serial.println(result);
}
}
delay(5);
}
void cr(unsigned char first, uint8_t result[], size_t len){
Wire1.beginTransmission(i2cAddress);
Wire1.write(first); // set register for read
Wire1.endTransmission(false); // false to not release the line
Wire1.requestFrom(i2cAddress, len, true);
Wire1.readBytes(result, len);
if(DEBUG){
Serial.print(first, HEX);
Serial.print(" ");
for (int i = 0; i < len; i++) {
Serial.print(result[i], HEX);
Serial.print(" ");
Serial.println(result[i], BIN);
}
}
}
};
struct ClockSettings1 : public CodecSettings{
ClockSettings1(uint8_t i2c_address, TwoWire *wire) : CodecSettings(i2c_address, wire) {}
uint8_t page = 0x00;
uint8_t reg = 0x04;
uint8_t len = 1;
enum PLLRange{
PLL_HIGH = 0b01000000,
PLL_LOW = 0b00000000
};
enum PLLInputClock{
PLL_IN_MCLK = 0b00000000,
PLL_IN_BCLK = 0b00000100,
PLL_IN_GPIO = 0b00001000,
PLL_IN_DIN = 0b00001100
};
enum CodecInputClock{
CODEC_IN_MCLK = 0b00000000,
CODEC_IN_BCLK = 0b00000001,
CODEC_IN_GPIO = 0b00000010,
CODEC_IN_PLL = 0b00000011
};
PLLRange pll_range = PLL_LOW;
PLLInputClock pll_input_clock = PLL_IN_MCLK;
CodecInputClock codec_input_clock = CODEC_IN_MCLK;
uint8_t get(){
return pll_range | pll_input_clock | codec_input_clock;
}
};

291
soundcube-i2s-test/codec.h Normal file
View File

@ -0,0 +1,291 @@
#pragma once
#include <cstdint>
#include <Wire.h>
#ifndef DEBUG
#define DEBUG false
#endif
// class TLV320AIC3204_Settings{
// public:
// TwoWire *wire;
// uint8_t i2cAddress = 0x18;
// ClockSettings1 clock_settings_1 = ClockSettings1(i2cAddress, wire);
// };
class TLV320AIC3204{
public:
TLV320AIC3204() : wire(&Wire) {}
TLV320AIC3204(TwoWire *wire) : wire(wire) {}
void begin(){init();};
void begin(TwoWire *_wire) {
wire = _wire;
init();
}
void begin(uint8_t i2cAddress, TwoWire *_wire) {
i2cAddress = i2cAddress;
wire = _wire;
init();
}
void init(){
// GENERAL
cw(0x00, 0x00); // select page 0
cw(0x01, 0x01); // soft reset
cw(0x1b, 0b00000000); // select I2S with 16 bit word length
cw(0x1d, 0b00000000); // disable loopback
// POWER and CM
cw(0x00, 0x01); // select page 1
cw(0x01, 0b00001000); // disable weak (crude) AVdd connection to DVdd
cw(0x02, 0b00000001); // enable internal AVdd LDO and enable analog blocks
cw(0x09, 0b00001100); // power up LOL, LOR, power down MAL, MAR, HPL, HPR
cw(0x0a, 0b00001000); // set full chip CM to 0.75V
cw(0x47, 0b00110011); // analog input quick charge time 1.6ms
// ROUTING
cw(0x00, 0x01); // select page 1
cw(0x34, 0b10000000); // LEFT MICPGA P route IN1L to LEFT_P with 40k input impedance
cw(0x36, 0b10000000); // LEFT MICPGA M route CM to LEFT_M with 20k input impedance
//cw(0x36, 0b00000011); // LEFT MICPGA M route CM to LEFT_M with 20k input impedance
cw(0x37, 0b10000000); // RIGHT MICPGA P route IN1R to RIGHT_P with 20k input impedance
cw(0x39, 0b10000000); // RIGHT MICPGA M route CM to RIGHT_M with 20k input impedance
//cw(0x39, 0b00000011); // RIGHT MICPGA M route CM to RIGHT_M with 20k input impedance
cw(0x3a, 0b00111100); // connect IN2, IN3 weakly to CM
// GAIN
cw(0x00, 0x01); // select page 1
cw(0x3b, 0b00000000); // unmute left MICPGA, set gain to 0db
cw(0x3c, 0b00000000); // unmute right MICPGA, set gain to 0db
// VOLUME
cw(0x00, 0x01); // select page 1
cw(0x16, 0b01110101); // MUTE IN1L to HPL
cw(0x17, 0b01110101); // MUTE IN1R to HPR
// ADC
cw(0x00, 0x00); // select page 0
cw(0x12, 0x81); // NADC 1
cw(0x13, 0x82); // MADC 2
cw(0x14, 0b10000000); // OSR ADC 128
//cw(0x14, 0b01000000); // OSR ADC 128
cw(0x3d, 0b00000001); // ADC PRB_R3 = 11, PRB_R2 = 10, PRB_R1 = 01
cw(0x00, 0x01); // select page 1
cw(0x3d, 0b00000000); // ADC PTM_R4
// DAC
cw(0x00, 0x00); // select page 0
cw(0x0b, 0x81); // NDAC 1
cw(0x0c, 0x82); // MDAC 2
cw(0x0d, 0x00); // OSR DAC 128
cw(0x0e, 0x80); // OSR DAC 128
cw(0x1b, 0b00000000); // word length 16bits
cw(0x3c, 0b00000001); // PRB_P3
cw(0x00, 0x01); // select page 1
cw(0x7b, 0b00000001); // set REF charging time to 40ms
// ROUTING
cw(0x00, 0x01); // select page 1
cw(0x0e, 0b00001000); // left DAC reconstruction filter routed to LOL
cw(0x0f, 0b00001000); // right DAC reconstruction filter routed to LOR
cw(0x03, 0b00000000); // DAC PTM_P3/4
cw(0x04, 0b00000000); // DAC PTM_P3/4
// LO GAIN
cw(0x00, 0x01);
cw(0x12, 0b00000001); // LOL gain 0dB
cw(0x13, 0b00000001); // LOR gain 0dB
// POWER UP
// ADC
cw(0x00, 0x00); // select page 0
cw(0x51, 0b11000000); // power up ADC
cw(0x52, 0b00000000); // unmute ADC
cw(0x3f, 0b11010100); // power up and route left digital audio to left dac channel and right to right
cw(0x40, 0x00); // unmute DAC digital volume
// DAC VOLUME 0b00000000 = 0dB, 10000001 = -63.5dB, 0b00110000 = +24dB
cw(0x00, 0x00); // select page 0
cw(0x41, 0b11111001); // LEFT
cw(0x42, 0b11111001); // RIGHT
// ADC VOLUME 0b1101000 = -12dB, 0b00000000 = 0dB, 0b0101000 = +20dB
cw(0x00, 0x00); // select page 0
cw(0x53, 0b01110000); // LEFT
cw(0x54, 0b01110000); // RIGHT
// // STATUS FLAGS
// Serial.println("CODEC STATUS");
// cw(0x00, 0x00); // select page 0
// Serial.println("ADC Flags");
// cr(0x24, 1);
// Serial.println("DAC Flags");
// cr(0x25, 1);
// Serial.println("P0_42 - Sticky Flags");
// cr(0x2A, 1);
}
// void softReset(){}; // 0x00 0x01
// void hardReset(){}; // reset pin
// void powerUp(){}; // power up
void setMicPgaGain(int gainLeft, int gainRight); // 0 - 47.5dB in 0.5dB steps
void setMicPgaGainL(int gain);
void setMicPgaGainR(int gain);
void setLineOutVolume(int volumeLeft, int volumeRight);
void setLineOutVolumeL(int volume);
void setLineOutVolumeR(int volume);
private:
TwoWire *wire;
uint8_t i2cAddress = 0x18;
void cw(unsigned char first, unsigned char second){
wire->beginTransmission(i2cAddress);
wire->write(first);
wire->write(second);
int result = wire->endTransmission();
if(DEBUG){
Serial.print(i2cAddress, HEX);
Serial.print(" ");
Serial.print(first, HEX);
Serial.print(" ");
Serial.print(second, HEX);
Serial.print(" : ");
if(result == 0) {
Serial.println("OK");
} else {
Serial.print("ERROR: ");
Serial.println(result);
}
}
delay(5);
}
void cr(unsigned char first, uint8_t result[], size_t len){
wire->beginTransmission(i2cAddress);
wire->write(first); // set register for read
wire->endTransmission(false); // false to not release the line
wire->requestFrom(i2cAddress, len, true);
wire->readBytes(result, len);
if(DEBUG){
Serial.print(first, HEX);
Serial.print(" ");
for (int i = 0; i < len; i++) {
Serial.print(result[i], HEX);
Serial.print(" ");
Serial.println(result[i], BIN);
}
}
}
// TLV320AIC3204_Settings settings;
};
/*
// GENERAL
cw(0x00, 0x00); // select page 0
cw(0x01, 0x01); // soft reset
cw(0x1b, 0b00000000); // select I2S with 16 bit word length
cw(0x1d, 0b00000000); // disable loopback
// POWER and CM
cw(0x00, 0x01); // select page 1
cw(0x01, 0b00001000); // disable weak (crude) AVdd connection to DVdd
cw(0x02, 0b00000001); // enable internal AVdd LDO and enable analog blocks
cw(0x09, 0b00001100); // power up LOL, LOR, power down MAL, MAR, HPL, HPR
cw(0x0a, 0b00001000); // set full chip CM to 0.75V
cw(0x47, 0b00110011); // analog input quick charge time 1.6ms
// ROUTING
cw(0x00, 0x01); // select page 1
cw(0x34, 0b10000000); // LEFT MICPGA P route IN1L to LEFT_P with 40k input impedance
//cw(0x36, 0b11000000); // LEFT MICPGA M route CM to LEFT_M with 20k input impedance
//cw(0x36, 0b00000011); // LEFT MICPGA M route CM to LEFT_M with 20k input impedance
cw(0x37, 0b10000000); // RIGHT MICPGA P route IN1R to RIGHT_P with 20k input impedance
//cw(0x39, 0b11000000); // RIGHT MICPGA M route CM to RIGHT_M with 20k input impedance
//cw(0x39, 0b00000011); // RIGHT MICPGA M route CM to RIGHT_M with 20k input impedance
cw(0x3a, 0b00111100); // connect IN2, IN3 weakly to CM
// GAIN
cw(0x00, 0x01); // select page 1
cw(0x3b, 0b00000000); // unmute left MICPGA, set gain to 0db
cw(0x3c, 0b00000000); // unmute right MICPGA, set gain to 0db
// VOLUME
cw(0x00, 0x01); // select page 1
cw(0x16, 0b01110101); // MUTE IN1L to HPL
cw(0x17, 0b01110101); // MUTE IN1R to HPR
// ADC
cw(0x00, 0x00); // select page 0
cw(0x12, 0x81); // NADC 1
cw(0x13, 0x82); // MADC 2
cw(0x14, 0b10000000); // OSR ADC 128
//cw(0x14, 0b01000000); // OSR ADC 128
cw(0x3d, 0b00000001); // ADC PRB_R3 = 11, PRB_R2 = 10, PRB_R1 = 01
cw(0x00, 0x01); // select page 1
cw(0x3d, 0b00000000); // ADC PTM_R4
// DAC
cw(0x00, 0x00); // select page 0
cw(0x0b, 0x81); // NDAC 1
cw(0x0c, 0x82); // MDAC 2
cw(0x0d, 0x00); // OSR DAC 128
cw(0x0e, 0x80); // OSR DAC 128
cw(0x1b, 0b00000000); // word length 16bits
cw(0x3c, 0b00000001); // PRB_P3
cw(0x00, 0x01); // select page 1
cw(0x7b, 0b00000001); // set REF charging time to 40ms
// ROUTING
cw(0x00, 0x01); // select page 1
cw(0x0e, 0b00001000); // left DAC reconstruction filter routed to LOL
cw(0x0f, 0b00001000); // right DAC reconstruction filter routed to LOR
cw(0x03, 0b00000000); // DAC PTM_P3/4
cw(0x04, 0b00000000); // DAC PTM_P3/4
// LO GAIN
cw(0x00, 0x01);
cw(0x12, 0b00000001); // LOL gain 0dB
cw(0x13, 0b00000001); // LOR gain 0dB
// POWER UP
// ADC
cw(0x00, 0x00); // select page 0
cw(0x51, 0b11000000); // power up ADC
cw(0x52, 0b00000000); // unmute ADC
cw(0x3f, 0b11010100); // power up and route left digital audio to left dac channel and right to right
cw(0x40, 0x00); // unmute DAC digital volume
// DAC VOLUME 0b00000000 = 0dB, 10000001 = -63.5dB, 0b00110000 = +24dB
cw(0x00, 0x00); // select page 0
cw(0x41, 0b11111001); // LEFT
cw(0x42, 0b11111001); // RIGHT
// ADC VOLUME 0b1101000 = -12dB, 0b00000000 = 0dB, 0b0101000 = +20dB
cw(0x00, 0x00); // select page 0
cw(0x53, 0b01110000); // LEFT
cw(0x54, 0b01110000); // RIGHT
*/

View File

@ -4,122 +4,87 @@
*/
#include <Wire.h>
#include <I2S.h>
#include "codec.h"
I2S i2s(INPUT_PULLUP);
#define SIZE 256
int16_t buffer[SIZE];
TLV320AIC3204 codec;
void cw(char first, char second){
Wire1.beginTransmission(0x18);
Wire1.write(first);
Wire1.write(second);
Wire1.endTransmission();
delay(5);
#define SIZE 16
#define ECHO 192000
int16_t buffer[SIZE];
int16_t buffer2[ECHO];
int16_t volume = 0;
size_t count;
size_t tape_write = 0;
void codec_transmit() {
for(int i = 0; i < count; i++){
buffer2[tape_write] = buffer[i];
tape_write++;
if(tape_write == ECHO) tape_write = 0;
int tape_read = tape_write + 1;
if(tape_read < 0) tape_read += ECHO;
buffer[i] += buffer2[tape_read % ECHO];
}
i2s.write((const uint8_t *)&buffer, count * sizeof(int16_t));
}
void codec_receive(){
count = i2s.read((uint8_t *)&buffer, SIZE * sizeof(int16_t)) * sizeof(uint32_t) / sizeof(int16_t);
for(int i = 0; i < count; i++){
buffer[i] *= -1;
}
}
void setup() {
i2s.setSysClk(48000);
Serial.begin(115200);
delay(1000);
delay(2000);
Wire1.setSDA(2);
Wire1.setSCL(3);
Wire1.begin();
delay(1000);
// GENERAL
cw(0x00, 0x00);
cw(0x01, 0x01);
cw(0x1b, 0x10); // select I2S
// ADC
cw(0x00, 0x00); // select page 0
//cw(0x01, 0x01); // soft reset
cw(0x12, 0x87); // NADC 7
cw(0x13, 0x82); // MADC 2
cw(0x14, 0x80); // OSR ADC 128
cw(0x3d, 0x01); // ADC PRB_R1
cw(0x00, 0x01); // select page 1
cw(0x01, 0x08); // disable crude AVdd
cw(0x02, 0x01); // enable internal AVdd LDO
cw(0x0a, 0x0B); // set input CM to 0.9V and LO to 1.65V
cw(0x3d, 0x00); // ADC PTM_R4
cw(0x34, 0x80); // route IN1L to LEFT_P with 20k input impedance
cw(0x36, 0x80); // route CM to LEFT_M with 20k input impedance
cw(0x37, 0x80); // route IN1R to RIGHT_P with 20k input impedance
cw(0x39, 0x80); // route CM to RIGHT_M with 20k input impedance
cw(0x3b, 0x0c); // unmute left MICPGA
cw(0x3c, 0x0c); // unmute right MICPGA
cw(0x00, 0x00); // select page 0
cw(0x51, 0xc0); // power up ADC
cw(0x51, 0x00); // unmute ADC digital volume control
// DAC
cw(0x00, 0x00); // select page 0
//cw(0x01, 0x01); // software reset
cw(0x0b, 0x82); // NDAC 2
cw(0x0c, 0x87); // MDAC 7
cw(0x0d, 0x00); // OSR DAC 128
cw(0x0e, 0x80); // OSR DAC 128
cw(0x1b, 0x10); // world length 20bits PTM_P4 (highest performance)
cw(0x3c, 0x08); // PRB_P8
cw(0x00, 0x01); // select page 1
//cw(0x01, 0x08); // disable internal crude avdd
//cw(0x02, 0x01); // enable AVdd LDO
cw(0x7b, 0x01); // set REF charging time to 40ms
//cw(0x14, 0x25); // set HP soft stepping for anti pop
//cw(0x0a, 0x0B); // set input CM to 0.9V and LO to 1.65V
cw(0x0e, 0x08); // left DAC reconstruction filter routed to LOL
cw(0x0f, 0x08); // right DAC reconstruction filter routed to LOR
cw(0x03, 0x00); // DAC PTM_P3/4
cw(0x04, 0x00); // DAC PTM_P3/4
cw(0x12, 0x00); // LOL gain 0dB
cw(0x13, 0x00); // LOR gain 0dB
delay(1000);
cw(0x00, 0x00); // select page 0
cw(0x3f, 0xd6); // power up and route left digital audio to left dac channel and right to right
cw(0x40, 0x00); // unmute DAC digital volume
delay(100);
pinMode(19, OUTPUT); // MCLK enable
digitalWrite(19, HIGH); // enable MCLK
pinMode(20, OUTPUT); // CODEC reset
digitalWrite(20, HIGH);
i2s.setSysClk(48000);
codec.begin(&Wire1);
i2s.setDOUT(14);
i2s.setDIN(15);
i2s.onTransmit(codec_transmit);
i2s.onReceive(codec_receive);
i2s.setDOUT(15);
i2s.setDIN(14);
i2s.setBCLK(16); // Note: LRCLK = BCLK + 1
i2s.setMCLK(18);
i2s.setMCLKmult(256); // 12.288.000Hz
i2s.swapClocks();
i2s.setBitsPerSample(16);
i2s.setFrequency(48000);
i2s.setMCLKmult(128); // 6144000Hz 6.144MHz
i2s.setBuffers(6, SIZE * sizeof(int16_t) / sizeof(uint32_t));
digitalWrite(19, HIGH); // enable MCLK
digitalWrite(20, HIGH);
i2s.begin();
if(!i2s.begin(48000)){
Serial.println("I2S error!");
while(100);
}
size_t count, index;
while (1) {
count = i2s.read((uint8_t *)&buffer, SIZE * sizeof(int16_t)) * sizeof(uint32_t) / sizeof(int16_t);
index = 0;
while (index < count) {
// Reduce volume by half
buffer[index++] >>= 1; // right
buffer[index++] >>= 1; // left
}
i2s.write((const uint8_t *)&buffer, count * sizeof(int16_t));
}
}
int32_t last = 0;
int frame = 0;
void loop() {
/* Nothing here */
frame++;
if(frame == 48000) frame = 0;
}

17
tools/index_luts.py Normal file
View File

@ -0,0 +1,17 @@
leds = []
for i in range(3,51):
leds.append(i)
leds_first = leds[0:37]
leds_first.reverse()
leds_last = leds[37:48]
leds_last.reverse()
leds_yeah = leds_first + leds_last
print("int lut_ring_cw[48] = {", end="")
for i in range(0,48):
if i < 47:
print(leds_yeah[i], end=",")
else:
print(leds_yeah[i], end="")
print("};", end="")
print()

18
tools/ringbuffer-test.cpp Normal file
View File

@ -0,0 +1,18 @@
#include <iostream>
#include "ringbuffer.h"
RingBuffer<int16_t> ringbuffer(25);
int main(){
ringbuffer.begin();
for(int j = 0; j < 3; j++){
for(int i = 0; i < 15; i++){
if(!ringbuffer.isFull()) ringbuffer.push(i);
}
std::cout << "---" << std::endl;
for(int i = 0; i < 25; i++){
if(!ringbuffer.isEmpty()) ringbuffer.pop();
}
}
}

49
tools/ringbuffer.h Normal file
View File

@ -0,0 +1,49 @@
#pragma once
#include <iostream>
template<typename T>
class RingBuffer{
public:
RingBuffer(size_t size) : bufferSize(size) {}
void begin(){
buffer = new T[bufferSize];
}
bool push(T data){
std::cout << "write: " << data << std::endl;
if(counter < bufferSize){
buffer[write] = data;
write = (write+1) % bufferSize;
counter++;
return true;
}
return false;
}
T pop(){
T retval;
if(counter > 0) {
counter--;
retval = buffer[read];
read = (read+1) % bufferSize;
}
std::cout << "read: " << retval << std::endl;
return retval;
}
bool isEmpty(){
return counter == 0;
}
bool isFull(){
return counter == bufferSize;
}
private:
size_t bufferSize = 0;
int counter = 0;
int write = 0;
int read = 0;
T *buffer;
};